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Abstract 
 
Indoor pedestrian positioning sets severe challenges for a 
navigation system. To be applicable for pedestrian 
navigation the platform used has to be small in size and 
reasonably priced. Smartphones fulfill these 
requirements satisfyingly. GNSS signals are degraded 
indoors and in order to obtain accurate navigation aiding 
from other sensors is needed. Self-contained sensors 
provide valuable information about the motion of the 
pedestrian and when integrated with GNSS 
measurements a position solution is typically obtainable 
indoors. The accuracy is however decreased due to 
errors in the measurements of the self-contained sensors 
introduced by various environmental disturbances. When 
the effect of the disturbance is constrained using visual-
aiding the accuracy can be increased to an acceptable 
level. This paper introduces a visual-aided two-
dimensional indoor pedestrian navigation system 
integrating measurements from GNSS, Bluetooth, 
WLAN, self-contained sensors, and heading change 
information obtained from consecutive images. The 
integration is performed with an Extended Kalman filter. 
Reliability information of the heading change 
measurements calculated from images using vanishing 
points is provided to the filter and utilized in the 
integration. The visual-aiding algorithm is 
computationally lightweight taking into account the 
restricted resources of the smartphone. In the conducted 
experiment, the accuracy of the position solution is 
increased by 1.2 meters due to the visual-aiding.   
 
Keywords: pedestrian, navigation, visual-aided, smart-
phone, indoor 
_____________________________________________ 
 
1. Introduction 
 
Pedestrian indoor navigation sets challenges for the 
positioning equipment. The system has to be accurate, 
small enough to be carried by a human, and reasonably 
priced. Outdoors, GNSS receivers fulfill all demands set 
for a pedestrian navigation system, but indoors the 

accuracy decreases substantially or the position 
information becomes impossible to obtain. There is not a 
single comprehensive sensor for indoor navigation such 
as GNSS outdoors, and therefore measurements from 
different sensors have to be integrated.  
 
Wireless radio sensors, like Bluetooth or Wireless Local 
Area Network (WLAN) are often used for indoor 
positioning. Their drawback is however the limited 
availability of the location information provided as well 
as the need for a pre-installed infrastructure. Self-
contained sensors measure the motion of the pedestrian 
and provide a relative position; the attitude and distance 
traveled (Collin, 2006), (Retscher, 2007).  The attitude 
may be measured with a gyroscope or a digital compass 
and the distance with an accelerometer. The gyroscope 
suffers, however, from cumulative drift errors (Saarinen, 
2009), and the electric devices in indoor environments, 
like elevators and printers, cause the measurements from 
a digital compass to be erroneous. A camera is 
independent from other sensors and the noise in images 
is not cumulating over time. The camera is also free 
from an infrastructure installation. The motion of the 
camera may be calculated from consecutive images. 
When the camera is carried by a pedestrian, the motion 
of the camera relates to the motion of the pedestrian. 
Integrating the motion information obtained from the 
images derives a navigation system with increased 
availability and accuracy.  
 
Visual-aiding has been used already for decades in 
navigation of robots and unmanned vehicles (Corke et al. 
2007). In pedestrian navigation, the focus of the research 
has been mainly in systems using a priori formed 
databases. The databases contain images of recognizable 
features in the surroundings attached with position 
information (Aoki et al., 1999), (Robertson and Cipolla, 
2004), (Zhang and Kosecka, 2006), (Steinhoff et al., 
2007). When a match between images in the database 
and the ones taken by a pedestrian is found, the absolute 
position may be obtained. The database based procedure 
is though laborious due to the a priori preparations and is 
restricted to the predefined region.  
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Integrating visual-aiding information with the 
measurements from other sensors has become a research 
topic only in the latest years. Kourogi and Kurata (2003) 
corrected the position measurement obtained with self-
contained sensors using image matching with a database. 
A procedure similar to the one discussed in this paper 
was introduced by Diel et al. (2005) and Kessler et al. 
(2010). They calculated motion information from 
consecutive images and used it to visual-aid the 
navigation system.  
 
Integrating the measurements from different sensors 
increases the accuracy, availability, continuity, and 
integrity of a pedestrian navigation system. This can’t 
though be done with the cost of the system usability, 
meaning the compactness, lightweight and price of the 
equipment. A smartphone is an appropriate platform for 
the system. It is reasonably priced and lightweight. 
Almost all smartphones contain most of the sensors 
needed; camera, wireless radio, GNSS, digital compass, 
accelerometer, some also a gyroscope. The restricted 
processing power and storage space set challenge to a 
navigation system running on a smartphone.  
 
The navigation environment sets constraints for the 
visual-aiding. The methods based on calculating the 
motion of the camera from consecutive images are based 
on finding features from images that can be followed in 
the subsequent ones. The indoor surroundings where 
navigation is mostly needed, like offices and public 
buildings, are poor with features. The lighting is also 
often constricted. Fortunately these indoor environments 
contain many straight lines, like borders of floors and 
walls that are also in some extent invariant for changes 
in lighting. The lines may be used for calculating 
vanishing points, features arising from the projections of 
three-dimensional objects in the field of vision of the 
camera into two-dimensional image points. These 
features may be used to define the change in the 
orientation of the camera relating to the orientation of 
the pedestrian. 
 
The algorithms for vanishing point calculations 
presented in previous research are computationally 
heavy for a smartphone solution. This paper introduces 
an indoor pedestrian navigation system using a rapid 
algorithm utilizing visual-aided heading of the motion. 
The algorithm calculates the change in the heading using 
vanishing points. The calculations are performed with a 
frequency of 1 Hz which fulfills the real-time 
requirements set for navigation. The system integrates 
the visual-aiding information with measurements 
obtained from other sensors using an Extended Kalman 
filter. The paper presents an evaluation of the accuracy 
and reliability of the visual-aiding - information needed 
to construct a favorable integration filter. 
 

2. Resolving the Heading of Motion with 
Computer Vision Based Methods  

 
An image is a perspective projection of three-
dimensional objects in the field of vision of the camera 
into two-dimensional figures. The projection loses 
valuable information like the depth of the scene. Though 
straight lines stay straight in projections, the parallel 
ones don’t stay parallel but seem to intersect in a point. 
This point is called the vanishing point.  
 
The change of the orientation of the camera is obtained 
by calculating the change of the vanishing point 
coordinates in consecutive images. When the rotations in 
pitch and roll are restricted, the orientation change is the 
change in the heading. The following describes the 
definition of the vanishing points and various computer 
vision based methods for reducing noise in the images, 
finding the parallel lines and the vanishing point as well 
as calculating the heading change. 
 
2.1 Vanishing points 
Vanishing point is a point in the image where all parallel 
lines seem to intersect.  The projection of a line l to the 
image plane is shown in Fig. 1. A point p1 on the line is 
projected to the plane as  p’1. The projection may be 
expressed using the camera matrix M c with p’1=M cp1 

∞p

(Kessler et al., 2010). The camera matrix M=KR 
consists of the camera calibration matrix K and 
orientation of the camera R. Similarly the line l with 
direction d is projected as l’. All lines passing through 
the camera center with direction d and parallel to l 
intersect a plane at infinity in the infinite point . The 
vanishing point v is the projection of this point to the 
image plane. This reconstruction enables resolving the 
change in the direction of the lines in consecutive images 
and that way in the orientation of the camera R.  Let v1, 
v2 be the vanishing points in the first and second 
consecutive images and d1, d2 their directions 
respectively. By defining a normalizing factor ∥K-1v i ∥, 
the directions d i 

 

may be calculated with (1) using the 
coordinates of the vanishing points (Hartley and 
Zisserman, 2003) 

iii vKvKd 11 / −−=
.
     (1) 

 
The calibration matrix K contains information of the 
intrinsic camera parameters, the focal length (fx,fy

 

), 
principal point (u,v), aspect ratio and skew (S). In order 
to make the motion calculations easier, the aspect ratio is 
usually assumed to be 1 and skew 0 in computer vision 
algorithms. With these assumptions, the calibration 
matrix (2) may be calculated even from a single image 
using vanishing points (Kosecka and Zhang, 2002).    
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Figure 1: The vanishing point v of line l shown on the 
image plane. Figure is based on (Kessler et al. 2010). 
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2.2 Retrieving the lines from an image  
Parallel lines in the image must be retrieved for the 
calculation of their intersection point, the vanishing point. 
This is done by first looking for the edges of objects in 
the image and then identifying the straight lines among 
them.  
 
Images contain noise coming from different stages of the 
imaging process. A considerable source is the varying 
lighting conditions, especially indoors. The presence of 
noise disturbs the edge detection and causes errors for 
the calculations. Thorough pre-processing of the images 
removes noise and makes the calculations more stable. A 
pixel with an intensity value diverging notably from its 
neighbours is suffering from noise with a high 
probability. The noise may be removed by substituting 
the intensity of the pixel with a weighted sum of its 
neighbours’. The process is called convolution (Forsyth 
and Ponce, 2003). The image Fu,v is convoluted with a 
kernel H i-u,j-v  replacing the value of a pixel (u,v) with a 
weighted sum of values of neighbour pixels resulting in 
image R i,j  
 

as defined with (3)  

∑= −−
vu

vuvjuiji
,

,,, FHR .                 (3) 

 
A Gaussian kernel H i,j

 

 reduces the noise effectively by 
emphasizing the weights of the nearest neighbours of the 
pixel when a large standard deviation value is used. The 
procedure causes some blurring but that doesn’t disturb 
the edge detection notably. The Gaussian kernel may be 
presented with (4)  
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The size of the neighbour area is 1212 ++ kxk . 
 
Edges of objects may be found by tracing fast changes in 
the brightness values. Canny edge detector is one of the 
most used edge detectors (Canny, 1986). In vanishing 
point calculations only lines are considerable features 
and other edges should be left out from the calculations. 
Hough transform is a robust method for retrieving the 
lines from the set of edges (Hough, 1962).  
 
2.3 Resolving the heading change 
The method used in this paper calculates the vanishing 
points by voting for the intersection points of all lines 
and correcting the effect of noise with robust estimation 
using weighted means (Jepson and Fleet, 2009). When 
the rotations in the pitch and roll directions are restrained, 
the change of the vanishing point coordinates in z-
direction is defined with (5) (Gallagher, 2005) 
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The component of focal length, fx

Fig. 2

, is obtained from the 
camera calibration matrix. The z-direction is the 
direction of the motion along the z-axis of the world 
coordinate frame presented in . By calculating the 
coordinates of the vanishing point in consecutive images, 
the change in the heading, θ, related to the rotation of the 
camera along the world XZ-plane, is obtained.  
 

 
 
Figure 2:  World coordinate frame with z-direction being 
the direction of motion 
 
3. Integrating Visual Information with Other 

Measurements 
 
The position information obtained using calculations 
from consecutive images is relative. The relativity means 
that only the change in distance and attention may be 
evaluated. The information has to be integrated with 
measurements from other sensors to get an operative 
navigation system. As discussed in the introduction part, 
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there is no one comprehensive sensor to be used indoors. 
The system presented in this paper consists of different 
self-contained and radio sensors, represented more 
closely in Section IV. Measurements obtained with 
different sensors must be integrated with a filter. In the 
system discussed the filter is an Extended Kalman Filter. 
The filter needs estimates of the reliability of the 
measurements entered as inputs. The evaluation of the 
accuracy of the heading change obtained with visual-
aided methods presented above is explained in the 
following. 
 
3.1 Evaluation of errors in visual-aiding information 
The information obtained from images with visual-
aiding methods is noisy, especially in environments with 
varying lighting conditions such as indoors. The noise 
may be reduced using an appropriate kernel for filtering 
the image as explained in the previous section. The 
appearance of unessential lines due to e.g. shadows in 
the image caused by the sunlight coming from the 
windows or texture with lines that are not parallel, 
introduce errors into the vanishing point calculations that 
aren’t easy to correct for. The lack of sufficient light 
diminishes the number of appropriate lines found for the 
calculations. In order to get an accurate position solution, 
the reliability of the measured vanishing points has to be 
evaluated after each calculation and the confidence for 
its correct location taken into account in the integration 
procedure. The heading change computation using the 
vanishing points with the previously presented method 
was evaluated to give an accuracy of 1.5 degrees with a 
stationary camera and for some extent stable lighting 
conditions; more details are in (Ruotsalainen et al., 2011).  
The situation in the navigation system presented in this 
paper is, however, more difficult, since the motion 
induces noise to the images and the lighting conditions 
vary heavily.   

The reliability of the vanishing point calculations may be 
evaluated based on the geometry of the lines found. The 
lines found from the same plane, e.g. the floor and from 
the same side in regard to the camera, don’t intersect at 
the vanishing point. That is, the slope of all same-plane 
lines is either positive or negative. This is shown in Fig. 
3. The vanishing point, a red circle, is calculated using 
lines colored with blue. The green lines are lines 
orthogonal to the direction of the motion and therefore 
they don’t intersect in the vanishing point calculated in 
the direction of motion. Heading rate information from 
images with vanishing points deemed erroneous is 
excluded from the integration and only measurements 
from the other sensors are used at those epochs.  

The y coordinate of the vanishing point should be the 
same within a threshold for all images taken with a 
camera having unchanged pitch and roll angles as was 
discussed in the previous section. If the line geometry is 
satisfying the correctness of the vanishing point may be 

evaluated by examining its coordinates. If the y 
coordinate doesn’t comply with the rule depicted above, 
the visual-aiding measurement is included in the 
integration with decreased reliability and weight. 

The statistics of the errors in the heading change were 
calculated with a test using a visual-aided navigation 
system presented in the following section. The results 
were compared with a ground truth reference. The 
distribution of the errors was found close-to zero-mean 
Gaussian with the standard deviation (σ) being 1.9 
degrees. A decreased trustworthiness was found for three 
images out of the total of 50. Fig. 4 shows the 
distribution of the errors. It is noted that the test 
performed is short in time, limited with images obtained, 
and contains only a particular indoor environment 
scenario, but it serves the demonstration purpose well 
and is expected to have generalization potential.  
 

Figure 3 An erroneous vanishing point (shown with a red 
dot) due to bad geometry of the lines found. 

 
Figure 4 Distribution of the heading change errors 
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3.2 Integrating measurements with a Kalman filter 
A filter is needed for the integration of the measurements 
from different location and motion sensors and the 
visual-aiding information. A Kalman Filter, e.g. (Welch 
and Bishop, 2006), (Grewal and Andrews, 2008), 
estimates the state nℜ∈x  of a discrete-time process 
with the equation (6) 
 

kkkk wBuAxx ++= −1                               (6) 
 

with a measurement mℜ∈z  that is 
 
                       kkk vHxz += .                                    (7) 
 
The variables kw and kv represent noise. A covariance 
matrix Q defines the process noise and R the 
measurement noise. The matrix A propagates the state 
from the previous step k-1 to the current step k. The 
matrix B is the control-input model that is applied to the 
control vector uk. The matrix H relates the state to the 
measurement zk

 

. The Kalman Filter estimates the 
process state first and then, after obtaining the 
measurements, adjusts the state estimate and covariance 
using a variable called the Kalman gain.    

The Kalman Filter was created for linear equations; 
some adjustments have to be made to be able to use it for 
usually non-linear navigation applications. The Extended 
Kalman filter is a suitable modification of the original 
Kalman filter: the state estimate is linearized around the 
current estimate. This may be done by using partial 
derivatives of the measurements and the process 
equations (Welch and Bishop, 2006). However, it has to 
be noted, that if the initial estimate of the state is 
incorrect, or if the process is modelled inexactly, the 
filter may quickly diverge due to the linearization. The 
measurement error estimates describing the confidence 
on the observations are fed to the filter through the 
measurement covariance matrix R.  
 
4. Results with the Visual-aided Navigation 

System 
 
Results obtained with the two-dimensional pedestrian 
indoor navigation system utilizing visual-aiding are 
shown in the following. 
 
4.1 System construction 
The visual-aided pedestrian indoor navigation system 
consists of wireless local area network (WLAN), 
Bluetooth (BT), and GPS location information for 
retrieving absolute positioning. The system is augmented 
with self-contained sensors; accelerometer offering 
information about the translation and two digital 
compasses about orientation, as well as with a Nokia N8 

smartphone camera for the visual-aiding in form of the 
heading change rate measurement. The measurements 
are integrated using the Kalman filter construction 
discussed in (Kuusniemi et al., 2011) and presented 
briefly in the following. 
 
The positioning equations for a pedestrian in a horizontal 
plane are presented in (8), where φ is the East coordinate, 
λ the North coordinate, both in meters, S (m/s) is the 
speed, θ (degrees) the heading defined with the origin 
East and counter-clockwise positive, and θ (degrees/s) 
the heading change rate.  
 

51

41

31

21

11

)sin(
)cos(

wSS
wt

w

wtS
wtS

kk

kkkk

kk

kkkkk

kkkkk

+=
++∆=

+=

+∆⋅⋅+=
+∆⋅⋅+=

+

+

+

+

+

θθθ

θθ

θλλ
θϕϕ





  

The variable Δt presents the time between two epochs 
and wi 
 

is the noise in the measurements.  

The state vector is defined as 
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and thus the state model and measurement model are 
defined as  

k1kkk wxAx += −−1               (10) 

kkkk vxHz +=                             (11)           
where the process noise is ),0(~ kk N Qw , the 
measurement noise is ),0(~ kk N Rv . To avoid 
linearization, the state transition matrix is defined here 
simplified as 
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Ak is approximated as a constant matrix at every time 
epoch k. The corresponding process noise matrix Qk is 

(8) 
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where 

b = cos(θk-1) and a = sin(θk-1

 
) 

The number of measurements fed to the filter is varied 
on an epoch-to-epoch basis based on the availability of 
the sensors; each source of measurement information has 
a different output and availability rate. The non-
availability situations of the visual aiding were discussed 
in the previous section. The full-scale measurement 
vector is zk = (φGPS  λGPS  φWLAN  λWLAN  φBT  λBT θ CAM θDC1 θDC2 
SACC  SGPS)T , where BT is the Bluetooth, WLAN the 
wireless area network, CAM the camera, DC1 and DC2 
digital compasses, and ACC the accelerometer. The 
speed from the accelerometer, SACC

 

, is obtained through 
assessing the acceleration pattern by applying speed 
detection and assumptions about the motion. The WLAN 
and BT position results are obtained by a fingerprinting 
database approach utilizing Bayesian estimation and a 
maximum likelihood algorithm, more details can be 
found in (Kuusniemi et al., 2011). 

The measurement covariance matrix Rk
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 is a diagonal 
matrix with its size depending on the amount of 
measurements at the corresponding epoch k 

 

The visual-aided heading change measurement error 
estimate is derived by assessing the line geometry as 
introduced in the previous section. More details about 
the other measurement noise values as well as the 
process noise values used can be found in (Kuusniemi et 
al., 2011). 
 
4.2 Results 
The system was tested inside a typical office building. 
The ground truth was obtained with NovAtel’s high-
accuracy SPAN GPS/INS reference solution. The tester 
walked along the corridors of an office building pushing 
the cart that carried the system. A comparison was made 
between the system with and without the visual-aiding. 
The results of positioning with GPS, Bluetooth, and 
WLAN solely were also retrieved for comparison 
purposes.  The visual-aiding based on tracking vanishing 
points fails when the camera is facing a plane and no 

lines in the field of the vision of the camera are present 
(Ruotsalainen et al., 2011). Fig. 5 shows the position 
result for different constructions of the navigation 
system. The SPAN ground reference is shown with a 
green line, the fused navigation system without visual-
aiding in red and with the visual-aiding in blue. The 
accuracy of the position obtained without visual aiding is 
4.6 meters and with visual-aiding 3.4 meters. The 
accuracy while navigating with GPS, Bluetooth, and 
WLAN solely is 13.1 meters, 6.3 meters, and 8.9 meters, 
respectively.  
 

 
Figure 5: Position result with different constructions of 
the navigation system. 

Due to that the visual-aided heading rate retrieval fails 
when the camera faces planes or no lines can be found, 
the visual-aiding solution is tested while walking along 
the corridor only and not during the turns at the end of 
the corridors. This decreases the availability of the 
system to 82 % with visual-aiding, while it is 99 %, 52 
%, and 27 % for the GPS, Bluetooth, and WLAN-only 
systems, respectively. The accuracy and availability 
statistics are summarized in Table I. 
 

Table I: Horizontal error and availability statistics for 
positioning with a fused system with and without visual-

aiding, GPS, Bluetooth, and WLAN only. 

 
Statistics 

mean horizontal 
error (m) 

availability 
(%) 

Visual-aided  3.4 82 % 
Without visual 4.6 82 % 

GPS 13.1 99 % 
Bluetooth 6.3 52 % 
WLAN 8.9 27 % 

 
The accuracy of the heading change measurements 
obtained with visual-aiding was also evaluated. The 
results shown in (Ruotsalainen et al., 2011) were 
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obtained with a static camera and fairly stable lighting 
conditions: the mean error of the heading change being 
1.5 degrees in the stationary case. In the solution 
described in this paper, the situation is more demanding. 
The motion of the camera introduces noise to the images 
as well as the varying lighting circumstances while 
moving along the corridors of the office building. Fig. 3 
presented earlier shows the demanding lighting 
conditions found indoors. The pedestrian test discussed 
was done by taking 50 images while moving, and 
calculating thereafter the vanishing points for obtaining 
the heading change information. Only three vanishing 
points were deemed erroneous based on the geometry 
rules introduced earlier. These images were fully 
discarded in addition to the solution unavailability 
during turns. Fig. 6 presents the heading during the 
pedestrian indoor test.  The turns were intentionally left 
out of the scope of the analysis and will be subject of 
future research. The mean error of the heading change 
was 2.1 degrees. The statistics of the heading change 
errors are shown in Table II. 
 

 
Figure 6: The heading in degrees during the test. The 
SPAN reference is shown with green, the fused solution 
without visual-aiding with red, and the visual-aided 
solution with blue. 

 
Table II: Error statistics of the visual-aided derived 

heading change. 

 
Statistics 

min  
error 
(deg) 

max 
error 
(deg) 

mean 
error 
(deg) 

std of 
error 
(deg) 

 0.005 9.9 2.1 1.9 
 
5. Conclusions 
 
We have presented a two-dimensional pedestrian indoor 
navigation system using computer-vision based 
processing methods for providing the heading change 
measurements of a moving object. The change of the 
heading angle obtained by monitoring the change of 

vanishing point coordinates calculated from consecutive 
images is accurate, with the mean error being 2.1 
degrees in the test conducted. The algorithm used in the 
system presented is suitable for navigating with a 
smartphone as a platform due to its 1 Hz computation 
frequency obtainable with a lightweight vanishing point 
calculation algorithm. The availability of the fused 
navigation system is also highly increased compared to 
navigation with especially Bluetooth or WLAN only. We 
have presented a method for evaluating the reliability of 
the vanishing point calculations based on the image 
geometry. The reliability estimates direct the emphasis 
given to the visual-aiding information while integrating 
the measurements obtained with the different navigation 
sensors. The accuracy of the visual-aided position 
solution (3.4 meters) is increased more than one meter 
compared to the solution without visual aiding (4.6 
meters), and much compared to navigating with GPS, 
Bluetooth or WLAN only. The presented method 
provides the user with a two-dimensional position 
solution, which may be extended into three dimensional 
positioning by adding information from a supplementary 
sensor source. The source of height may be e.g. a 
barometer providing the altitude information or a 
wireless network access point providing floor-level 
information.   
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