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Abstract 

 

GPS signal detection using hypothesis testing analysis 

are given by using the generalized likelihood ratio test 

(GLRT) approach, applying the model of intermediate 

frequency (IF)  GPS signal of one satellite in white 

Gaussian noise. The test statistic follows central or 

noncentral F distribution and is nearly identical to central 

or noncentral chi-squared distribution because the 

processing samples are large enough to be considered as 

infinite in GPS acquisition algorithms. The probability of 

false alarm, the probability of detection and the threshold 

are affected largely when the hypothesis testing refers to 

the full PRN code phase and Doppler frequency search 

space cells instead of to each individual cell. The 

performance of the test statistic is also given with 

combining the noncoherent integration. Given the 

probability of false alarm to achieve a desired probability 

of detection, examples are illustrated to determine the 

relations among the threshold, the coherent integration 

time, the number of noncoherent integration and signal 

to noise ratio. 

 

Keywords: GPS, Hypothesis Testing, GLRT, Signal 

Detection. 

_____________________________________________ 

 

1. Introduction 

 

Detection (Kay, 1993-1) and estimation (Kay, 1993-2) 

are two aspects for signal processing. The received 

Global Positioning System (GPS) signal is buried in 

noise. We are interested in determining the presence or 

absence of satellite signals (detection aspect) and 

unknown parameter estimation (estimation aspect).  The 

GPS signal detection can be based on a hypothesis 

testing that could be summarized as hypothesis 1H , 

some satellite signal is present and hypothesis 0H , it is 

not. 0H  is referred to as the null hypothesis and 1H  as 

the alternative hypothesis. This problem is known as a 

binary hypothesis test since we must choose between 

two hypotheses (Kay, 1993-1). In Bromberg and Progri 

(2004), Bayesian estimation techniques are applied to the 

problem of time and frequency offset estimation for GPS 

receivers. The estimation technique employs Markov 

Chain Monte Carlo (MCMC) to estimate unknown 

system parameters. In Progri et al. (2003), it proposes a 

maximum likelihood GPS receiver for processing the 

received GPS signals of the L1 and L2 frequencies. The 

maximum likelihood GPS receiver performs a 

simultaneous, two-dimensional search of both the PRN 

code phase and Doppler frequency. In Winternitz et al. 

(2004), O’Driscoll (2007), and Shanmugam (2008), the 

GLRT approach is applied, but not that much in detail.  

In this paper, we also resort to GLRT approach to detect 

the GPS signal. Because the variance of WGN is 

unknown but has been taken into consideration under 

both hypotheses 
1H  and 

0H , the resultant hypothesis 

test leads to doubly composite hypothesis testing 

problem (Kay, 1993-1).  

 

In Dierendonck (1996), Ziedan (2006), Psiaki (2001) and 

Hegarty et al. (2003), they use the conclusion that the 

GLRT test statistic of GPS signal will follow central and 

non-central chi-squared distribution under hypotheses 

1H  and 0H , respectively. In this paper, based on the 

theorems (Kay, 1993-1) shown in Appendix, it has 

proved that in fact the test statistic follows central or 

noncentral F distribution. It has also shown that the test 

statistic is nearly identical to central or noncentral chi-

squared distribution only because the processing samples 

are large enough to be considered as infinite in GPS 

signal detection algorithms.  

 

In Dierendonck (1996), the hypotheses  
1H  and 

0H  

refer to each individual cell, and not to the full search 

space. And thus has the conclusion that increasing 

noncoherent integration number does not change the 

threshold. As a consequence, there is a high statistical 

risk that the noise will be, in some cells, higher than the 

calculated threshold. In this paper, it has proved that the 

probability of false alarm, the probability of detection 

and the threshold are all affected largely when the 

hypothesis testing refers to the whole PRN code phase 
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and Doppler frequency search space cells instead of to 

each individual cell.  

 

In this paper, as the test statistic considering all search 

space cells, the performance of the hypothesis testing is 

also given with combining the noncoherent integration to 

increase the processing gain. 

 

For different acquisition methods, the expression of the 

probability of false alarm, the probability of detection 

and the threshold will be different (Ziedan, 2006; Psiaki, 

2001; Borio et al., 2006). In this paper, we have derived 

the basic expression which can be altered and then 

applied to different acquisition methods. 

 

The rest of the paper is organized as follows. First, 

hypothesis testing analysis of GPS is introduced. 

Second, performance analysis is given. Third, GPS 

signal detection with noncoherent integration is 

analysed. Forth, given the probability of false alarm to 

achieve a desired probability of detection, examples are 

illustrated to determine the relations among the 

threshold, the coherent integration, the number of 

noncoherent integration and signal to noise ratio. Finally, 

conclusions are made. 

 

2. Hypothesis Testing Analysis 

 

Considering the detection of received sampled GPS 

intermediate frequency (IF) signal of one satellite in 

WGN and assuming the IF signal has a sampling 

frequency of sf , the detection problem becomes  
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where A  is the signal amplitude; 
ss fT 1  is the 

sampling period; )2( 22

0 sTANS   and the relation 

between 0NS  and 0NC  is 
10)(

0
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is the carrier to noise ratio in dB-Hz units; d  is the 

navigation data, with a data bit rate of 50Hz; C  is the 

received PRN code, which has a length of 1023 chips 

and a chipping rate of 1.023MHz;   is the initial phase 

of the carrier signal; IFf  is the IF carrier frequency; df  

is the Doppler frequency shift; n  is the index of 

samples, and N  is the number of the samples; n  is the 

PRN code delay; ][nw  is WGN with variance 
2  and 

zero mean. Parameters  2,,,,  nfA d  are unknown. In 

either case, the resultant hypothesis testing has unknown 

parameters under both 0H  and 1H  due to the noise 

parameters. It is termed the doubly composite hypothesis 

testing problem (Kay, 1993-1). 

The sequence of PRN code is known for an appointed 

satellite, while the sequence of the navigation data is 

unknown. One navigation data lasts for 20ms, during 

which time it includes 20 PRN code periods. So there are 

20 possible bit edges with each one is aligned with the 

start of a 1ms PRN code period. Taking Doppler 

frequency shift on the length of PRN code into 

consideration, the sampling time of the received PRN 

code and the data is expressed as follows 

 

)1)(()1)(( 11,, LdsLdnnfnn ffnnTffttt
d

 
(2) 

 

where nt  is the thn  sample time; 
nt  is the time of the 

code delay corresponding to the thn sample; 1Lf  is the 

L1 carrier frequency.  

 

Suppose that a two dimensional search will be done over 

the full code phase uncertainty of 1023 chips and a 

Doppler frequency shift uncertainty range from dminf  

to dmaxf  . The number of code phase search over 1023 

chips equals to the number of samples over 1ms, 

mssTfN 1 , where ms11 msT . For PIT IT , the number 

of Doppler frequency cells is Idmindmaxf TffN
d

)(  . So 

the total number of cells to be searched by considering 

all possible code phase and Doppler frequency shift 

combinations is 
dfsearch NNN  . 

 

Suppose the data bits and bit edge in IT  are known as a 

priori, ),,( dfnnd   is then can be neglected in below. So 

hypothesis 1H  becomes 

 

][))(2cos(),,(][:1 nwnTfffnnACnx sdIFd  H

(3) 

Because A  and   are unknown, we must assume that 

0A . Otherwise, two different set of A  and  , i.e, 

0,1  A  and   ,1A , will yield the same 

signal, and thus the parameters will not be identifiable 

(Kay, 1993-1) . 

 

We can rewrite ][nx  as 
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where )cos(1  A , )sin(2  A . Clearly, 0A  if 

and only if 021   since 
2

2

2

1  A . Thus we 

have the detection problem equivalent to 
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3. Performance Analysis 

 

3.1 If code phase and Doppler shift are known 

 

Firstly, we only take consideration of unknown 

parameters 2,, A  and assume that dfn ,  are known. 

In terms of the linear model we have  
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Then the GLRT for the hypothesis testing problem 

becomes 
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According to Theorem 9.1 (Kay, 1993-1) in Appendix, 

we have 







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01
A  and 0b  in this problem. Then 

we decide 1H  if 
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where  
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is the MLE of θ under 1H . F  is the threshold of (10). 

 

Using  
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Then 
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The exact detection performance is given by 
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where 2,2 NF  denotes an F distribution with 2 numerator 

degrees of freedom and 2N  denominator degrees of 

freedom (Kay, 1993-2). And  FNF 2,2 
  denotes a 

noncentral F  distribution with 2 numerator degrees of 

freedom, 2N  denominator degrees of freedom and 

noncentrality parameter F  which is given by  
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where 1θ  is the true value of θ  under 1H . Because 

 sTANS 22

0 2  and Is TNT  , we have 

  IF TNS 0 .  

 

The discussion of the F  distribution can be resort to 

(Kay, 1993-1). When N , we have 22

22,2 NF  

and     22

22,2  
NF . Then the test statistic is 

nearly identical to that of Theorem 7.1 (Kay, 1993-1) in 

Appendix. The principle difference (apart from the scale 

factor 2) is that the denominator 
2  has been replaced 

by its unbiased estimator 
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Then (10) becomes 
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Now we decide whether the sample number N  can be 

considered as infinite or not in GPS signal acquisition 

problem. The PDF of central F  distribution is denoted 

by 
21 ,vvF , and noncentral F  distribution  FvvF 

21,
 . 

Suppose 21 v , HzdB300 NC and ms1IT , then 

  10  IF TNS . We choose  and,1000,1002v  

separately and then draw the PDF for both central and 

noncentral F  distribution, which are shown in Fig. 1 (a) 

and (b). We can see that all the three lines in each of the 

two figures are almost identical to each other. In GPS 

problem, the typical sample rate is equal or larger than 

sf =2.048MHz, and with ms1IT  for normal signals or 

larger for weak signals, then 222  IsTfNv  are 

larger than 2000. So we can say that the test statistic is 

identical to that when 2  is known and then Theorem 

7.1
 
(Kay, 1993-1) is applied in GPS signal acquisition. 

Applying Theorem 7.1, the exact detection performance 

is then given by 
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The GLRT becomes 
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where   is the threshold of (24). 

 

The noncentrality parameter   is 
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For the 1  example, the PDF of  xT  for both central 

and noncentral chi-squared distributions are shown in 

Fig. 2.  
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Figure 1: (a) PDF for central F random variables for 

different 
2v  under 

1 2v  ; (b) PDF for noncentral F 

random variables for different 
2v  under 

1 2v   and 

1F   
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Figure 2: PDF for central and noncentral chi-squared 

random variables, 2

2  and  2

2 1  

 

3.2 If code phase and Doppler shift are unknown 

 

Secondly, we take consideration of df  and n  besides 

2,, A , and rewrite  xT  as  x
dfnT ,

, then the question 

becomes 
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which is shown in Fig. 3. Remember that the threshold 

  here is different from the one used before. 
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The exact distribution of the test statistic  x
d

d
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difficult to obtain since there is dependence between 
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 across the Doppler frequency and PRN code 

phase search space. One overly-conservative method to 

decide FAP  is via the union bound by assuming all the 
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 are independent (Winternitz et al., 2004). Thus, 

we have 
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Figure 3: Hypothesis testing analysis for GPS signal 

detection 
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where 
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is the probability of false alarm if we only examine one 

cell. Hence FAP  increases approximately linearly with 

the number of cells examined. 

 

A less conservative method
 
(Winternitz et al., 2004; 

Psiaki, 2001) to decide FAP  is via the union bound by 

only considering  x
dfnT ,

 which are mutually 

independent. For the C/A code phase dimension, we can 

consider this way. The C/A code has 1023 chips in 1ms 

and then repeats itself. It is nearly uncorrelated with 

itself, except for between ±1 chips. Normally, the 

sampling frequency 
s

f  is larger than twice of C/A code 

rate 1.23MHz, so obviously we have 1023
ms

N (Spiker, 

1996; Ward et al., 2006). The less conservative method 

can be applied to use 1023 instead of 
ms

N  as the 

independent searching cells of C/A code phase 

dimension. For the Doppler frequency dimension, we 

can consider this way. The frequency searching step is 

closely related to the length of the data used in the 

acquisition (Tsui, 2005). When the input signal and the 

locally generated complex signal are off by 1 cycle there 

is no correlation. When the two signals are off less than 

1 cycle there is partial correlation (Tsui, 2005). Normally, 

it is chosen that the maximum frequency separation 

allowed between the two signals is 0.5 cycle. For GPS 

signal of coherent integration time 
I

T (in second), a 

I
T1 (in Hz) signal will change 1 cycle in 

I
T . In order to 

keep the maximum frequency separation at 0.5 cycle in 

I
T , the frequency step should be 

I
T1 . Under this 

condition, the number of searching frequency cells in 
I

T  

is defined as 
df

N . Thus, we have 
dfsearch NN 1023  and  

then 

 

   cellPNNP FAsearchsearchFA
 2exp              (30) 

 

It will give a very good approximation to the desired 

threshold. In the rest of the paper, this less conservative 

method is applied. 

 

To find the probability of detection we first define a 

detection as a threshold crossing in the correct code 

phase and Doppler frequency cell. Hence, DP  is defined 

as the probability that the maximum of the spectrogram 

occurs in the correct cell, i.e., dcdc ffnn  , , when a 

signal is present. With this definition we have 

 

  

 
 

 
  2 2

2 2

, 1Pr ;

2ln

c dcD n f

search FA

P T

Q Q N P



   




 

 

 

x H
      (31) 

 

where   ITNS 02 . 
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Figure 4: DP  versus IT  under 0C N  30dB-Hz 

and 610FAP   
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As an example, suppose HzdB300 NC , 

sf 2.048MHz, and df (-5, 5)kHz, so IT3102  

and Isearch TN  4101023 . Given 610FAP , the 

relation between IT and DP  is plotted in Fig. 4. The 

threshold is set based on 
FAP . We can see that to obtain 

9.0DP , ms37IT  can be applied, under the 

conditions that the data bits and bit edge in this 37ms is 

known as a priori.  

 

4. Considering Noncoherent Integration 

 

Coherent integration over IT  is the first step in any 

acquisition method to find the GPS signals, because 

sometimes using IT  of data cannot detect a weak signal 

while only increase IT  requires many more operations. 

One way to process more data is through noncoherent 

integration. Typically a set of long input data is divided 

into 
ITN  blocks with PIT time IT , coherent integration is 

performed on all the blocks. After the coherent 

integration, the output at every frequency and code delay 

is complex and can be put into amplitude form. The 

amplitude from all the coherent integration of the same 

frequency and code delay are summed, known as 

noncoherent integration. As a result, the weak signal will 

be enhanced, leading to a higher signal to noise ratio. 

Suppose we have 
ITN  blocks of data,  nxm , where 

1,...,1,0 
ITNm ; 1,...,1,  NmNmNmNn . The 

signal acquisition measurement model for a GPS 

receiver is illustrated in Fig. 5. After each of GLRT 

 xmfn d
T ,,

 is calculated, we do 
ITN  noncoherent 

integration to get  x
dfnT ,

 before choosing the maximum 

over n  and df . The maximum is then compared 

against the threshold   to determine if the signal is 

present or not. Remember that the   here is different 

from the ones used before. 

Choose 

maximum 

over fd , nτ





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Figure 5: Hypothesis testing analysis for GPS signal 

detection with noncoherent integration 

Using Equation (24), the GLRT  xmfn d
T ,,

 and   x
dfnT ,

 

are expressed as 

 

        
2

1

2,, 2exp,,
ˆ

2
sdIFd

NmN

mNn
m

m

mfn nTffjfnnCnx
N

T
d










x

(32) 

   


IT

dd

N

m
mfnfn TT

1
,,, xx


                    (33) 

 

We decide 1H  if 

 

  




x
d

d

fn
nf

T ,
,

max                             (34) 

If  xmfn d
T ,,

 has a central or noncentral chi-squared 

distribution of 2 degrees,  x
dfnT ,

 has a central or 

noncentral chi-squared distribution of 
ITN2 degrees 

(Kay, 1993-1). 

Now we continue to determine the detection 

performance of this testing. First we are going to 

determine FAP . Under 0H , the test statistic is as follows 

 

  2

2, ~
ITd NfnT 


x                             (35) 

 

The general probability density function of  x
dfnTy ,

  

under hypothesis 0H , as a function of 
ITN , is as follows 

 

 
 

0;
!12

1
; 21

0 


 
yey

N
Hyp yN

T

N
IT

I

IT

       (36) 

 

which describes a chi-squared density function with 

ITN2  degrees of freedom.  

 

By considering  x
dfnT ,

 which are mutually independent, 

the corresponding probability of false alarm for a 

threshold   is then as follows 

 

   




2
2

0,
,

;maxPr
ITNd

d

QNTP searchfn
nf

FA








  Hx   (37) 

 

which is a function of the threshold  , the noncoherent 

integration number 
ITN  and the number of searching 

cells searchN . For a given threshold  and sum 
ITN , 

   



 dyypQ

ITN
0;2

2

H  can be determined from tables, 

or from the following incomplete gamma function 

 

   













 1

0

2

2!

1
2
2

IT

ITN

N

k

k

k
eQ







                  (38) 

 

DP  is defined as the probability that the maximum of the 

spectrogram occurs in the correct cell, 
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i.e., cnn   , dcd ff  , when a signal is present. With 

this definition we have 

 

    
 2

2
, 1Pr ;

c dc NTI

D n fP T Q
  

 


  x H        (39) 

 

where  

 

 
ITI NTNS 02                          (40) 

 

The probability density function of  x
dcc fnTy


 , as a 

function of 
ITN , is as follows 

 

 
 
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2

1
; 1
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11
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1
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 
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yyIe
y

yp
IT

IT

N

y
N






H   (41) 

 

where  uIr  is the modified Bessel function of the first 

kind with order r . The equation describes a noncentral 

chi-squared density function with 
ITN2  degree of 

freedom. The corresponding probability of detection for 

the threshold   is then calculated as 

 

 



dyypPD 1;H                      (42) 

 

Usually, the desired probability of false alarm is a given. 

Thus the procedure is first to use equations (37) and (38) 

to solve for the threshold  for that desired probability 

of false alarm. The only way that the threshold  can be 

determined for a desired FAP  is to do it iteratively via 

trail-and-error, a method such as the Newton-Rhapson 

method
 
(Dierendonck, 1996). And then evaluate the 

performance of the detector as a function of 0NC . If it 

doesn’t perform well enough, either 
ITN  or IT , or both, 

will have to be increased, which effectively slows down 

the search rate. Increasing IT  (decreasing the 

predetection bandwidth) is more effective, but not 

always possible because of Doppler frequency stability, 

or because of data bit edge occurrence and local 

oscillator stability. 

 

5. Examples 

 

Here are some examples to illustrate the relations among 

PIT IT , noncoherent integration number
ITN  , threshold 

 and 0NC to achieve a probability of detection 

9.0DP  for a given probability of false alarm 

610FAP .  

 

Suppose HzdB300 NC , MHz048.2sf , and 

 kHz5,5df , so 
ITI NT3102  and 

Isearch TN  100001023 . For the given 610FAP , the 

relations between IT , 
ITN  and DP are plotted in Fig. 6 

and the relations between IT , 
ITN and   are plotted in 

Fig. 7. We can see that to obtain 9.0DP  , the 

combinations of IT (in ms) and 
ITN  can be 

{4,16},{6,8},{11,4},{20,2} and {37,1}, or other possible 

combinations which are not shown in Fig. 6, if the data 

bits in this IT are known as a priori. We can see that the 

curve in Fig. 4 is the same as the curve of 1
ITN  in Fig. 

6, this can be easily understood that a coherent 

integration over IT  can be treated as a noncoherent 

integration over IT  with noncoherent integration 

number 1
ITN . Considering weak GPS signals, we 

suppose 
0 20dB HzC N   and the other parameters are 

unchanged. The relations between IT , 
ITN  and DP  are 

plotted in Fig. 8 and the relations between IT , 
ITN  and 

  are plotted in Fig. 9. We can see that to obtain 

9.0DP , the combinations of IT (in ms) and 
ITN  can be 

{37,16},{64,8},{113,4},{207,2} and {391,1}, or other 

possible combinations which are not shown in Fig. 8. 

Table 1 shows the combinations of (
ITN , IT ,  ) for both 

0NC 30 and 20dB-Hz under 610FAP  and 

9.0DP . 

 

Table 1: The Combinations of (
ITN , IT ,  ) for 

0C N  30 and 20dB-Hz under 610FAP  and 0.9DP   

0NC  (dB-Hz) 
ITN  

IT  (ms)   

30 

1 37 54 

2 20 59 

4 11 69 

8 6 86 

16 4 116 

20 

1 391 59 

2 207 64 

4 113 74 

8 64 92 

16 37 122 
 

Because the threshold has nothing to do with 0NC , 

Fig. 7 is the same as Fig. 9 for IT  from 1 to 60ms. But 

the threshold changes as IT  changes, while IT  is related 

to coherent integration sample number N . But in 

Dierendonck (1996), it has declared that increasing N  

does not change the threshold. This is only correct if we 

have a priori information of exact code delay and 
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Doppler frequency shift. In actual situations, we only 

have a range of code delay and Doppler frequency shift 

and then we have to search for all the possible 

combinations to detect the correct values. Hence 

increasing N  does change the threshold. 
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Figure 6: 
DP versus 

IT for different 
ITN under 

0C N  30dB-Hz and 610FAP   

Figure 7:   versus 
IT for different 

ITN  under 

0C N  30dB-Hz and 610FAP   
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Figure 8: DP  versus IT  for different 
ITN  under 

0C N  20dB-Hz and 610FAP   

Figure 9:   versus IT  for different 
ITN  under 

0C N  20dB-Hz and 610FAP   

 

If we have a priori information of exact code delay and 

Doppler frequency shift, then 1searchN , using 1  

instead of  , we have 

 12
2




ITN

QPFA                                    (43) 

Given 610FAP ,for  16,8,4,2,1
ITN , the 

corresponding 1  are calculated to be 1 ={27.63, 33.38, 

42.70, 58.32, 85.23}. The differences of the threshold 

between   in Fig. 9 and 1  versus IT  are shown in Fig. 

10. The differences at IT 1, 20, and 600ms for 

each
ITN  are shown in Table 2. They are increasing as 

IT  increases. It is apparent that searchN  cannot be 

simplified as 1
searchN . 

 

Table 2: Threshold Differences 1   for IT  1, 20, 

600ms 
 

 1   

ITN  1 2 4 8 16 

IT  1ms 19 20 21 23 27 

IT  20ms 25 26 28 31 35 

IT  600ms 32 33 35 39 44 
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Now we decide the relation between 0NC  and the 

probability of detection DP  under different IT  and 
ITN  

for the given 610FAP . Set 16
ITN , for different IT , 

DP  versus 0NC  are plotted in Fig. 11. We can tell that 

to obtain a probability of detection 9.0DP , the 

minimum detectable 0NC  are {23, 20, 18, 17, 16} (in 

dB-Hz) at IT {20, 40, 60, 80, 100}(in ms) separately. 

The results are shown in Table 3. Set IT 40ms, for 

different 
ITN , the probability of detection versus 0NC  

are plotted in Fig. 12. We can tell that to obtain a 

probability of detection 9.0DP , the minimum 

detectable 0NC  are {22, 20, 19, 18, 17} (in dB-Hz) at 


ITN {8, 16, 24, 32, 40} separately. The results are 

shown in Table 4. 
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Figure 11: 
DP  versus 

0C N  for different IT  under 

16
ITN   and 610FAP   

Figure 12: DP  versus 0C N  for different 
ITN  under 

IT =40ms and 610FAP   

 

Table 3: The Minimum Detectable 
0C N  

for Different IT  under 16
ITN   

Table 4: The Minimum Detectable 
0C N  

for Different 
ITN  under IT =40ms 

ITN  16 

IT  (ms) 20 40 60 80 100 

0C N  (dB-Hz) 23 20 18 17 16 
 

IT  (ms) 40 

ITN  8 16 24 32 40 

0C N  (dB-Hz) 22 20 19 18 17 
 

 

6. Summaries and Conclusions 

 

In this paper, GPS signal detection using hypothesis 

testing analysis are given, using the model of IF GPS 

signal of one satellite in WGN. The GLRT approach is 

applied to detect the GPS signal under hypotheses 1H  

and 0H .  

 

Based on detection theory, it has proved that in fact the 

GPS test statistic follows central or noncentral F  

distribution because the power of the WGN is unknown, 

as well as that the signal is also uncertain. But the 

statistic is nearly identical to central or noncentral chi-

squared distribution because the processing samples are 

large enough to be considered as infinite in GPS 

acquisition algorithms. The proof is shown in Fig. 1 
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Figure 10: Threshold differences 
1   versus 

IT  for 

different 
ITN  under 610FAP   
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where the PDFs for central and noncentral F  

distribution are nearly the same, respectively, when the 

denominators are large.  

 

It has also proved that the probability of false alarm, the 

probability of detection and the threshold are affected 

largely when the hypothesis testing refers to the full 

PRN code phase and Doppler frequency search space 

cells instead of to each individual cell. The performance 

of the test statistic is also given with combining the 

noncoherent integration to increase the processing gain.  

 

Given the probability of false alarm to achieve a desired 

probability of detection, examples are illustrated to 

determine the relations among the threshold, the PIT, the 

number of noncoherent integration and signal to noise 

ratio. For the given 610FAP , to obtain 9.0DP  

under 0NC 30dB-Hz, the combinations of IT (in ms) 

and 
ITN  can be {4,16},{6,8},{11,4},{20,2} and {37,1}; 

under 0NC 20dB-Hz, the combinations of IT (in ms) 

and 
ITN  can be {37,16},{64,8},{113,4},{207,2} and 

{391,1}. The threshold is related to 
ITN  and IT , but 

independent of 0NC . The differences of the threshold 

between using the less conservative method and only 

considering one individual cell are significant with 

values {19, 20, 21, 23, 27} at IT 1ms for
ITN ={1, 2, 4, 

8, 16}, respectively, whilethey are increasing as IT  

increases. So it is apparent that searchN  cannot be 

simplified as 1
searchN . For the given 610FAP , to 

obtain 9.0DP  under 16
ITN , the minimum 

detectable 0NC  are {23, 20, 18, 17, 16} (in dB-Hz) at 

IT {20, 40, 60, 80, 100}(in ms) separately; under 

IT 40ms, the minimum detectable  0NC  are {22, 20, 

19, 18, 17} (in dB-Hz) at 
ITN {8, 16, 24, 32, 40} 

separately. 

 

In this paper, the effect of data bits and bit edges in PIT 

IT is neglected temporarily to simplify the GPS signal 

detection problem. But for weak signals, how to decide 

the data bit sequence and bit edges will make the 

problem more important and complicated. More work 

about this aspect has been done by the authors. 

 

Appendix 

 

Theorem 7.1 (GLRT for Classical Linear Model) 

Assume the data have the form wHθx  , where H  is 

a known )( pNpN   observation matrix of rank p , 

θ  is a 1p  vector of parameters, and w  is an 1N  

noise vector with PDF ),0( 2
IN . The GLRT for the 

hypothesis testing problem 
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where A  is an )( prpr  matrix of rank r , b  is an 

1r  vector, and bAθ   is a consistent set of linear 

equations, is to decide 1H  if 
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is the MLE of θ  under 1H . The exact detection 

performance is given by 
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where the noncentrality parameters is 
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Theorem 9.1 (GLRT for Classical Linear Model 

─
2 Unknown) Assume the data have the 

form wHθx  , where H is a known )( pNpN   

observation matrix of rank p , θ  is a 1p  vector of 

parameters, and w  is an 1N  noise vector with 

PDF ),0( 2
IN . The GLRT for the hypothesis testing 

problem 

0:
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where A  is an )( prpr  matrix of rank r , b  is an 

1r  vector, and bAθ   is a consistent set of linear 

equations, is to decide 1H  if 
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where 

  xHHHθ
TT -1

1
ˆ                            (A.8) 
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is the MLE of θ  under 1H  or the unrestricted MLE. The 

exact detection performance (holds for finite data 

records) is given by 
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where pNrF ,  denotes an F  distribution with r  

numerator degrees of freedom and pN   denominator 

degrees of freedom. And )(' , pNrF   denotes a 

noncentral F  distribution with r  numerator degrees of 

freedom, pN  denominator degrees of freedom and 

noncentrality parameter   which is given by 
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where 1θ  is the true value of θ  under 1H . 

 

The unbiased estimator of 2  is 
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