

Journal of Global Positioning Systems (2012)
Vol.11, No.2 :127-144
DOI: 10.5081/jgps.11.2.127

A LabVIEW-Based GPS Receiver Development and Testing Platform

with DSP Peripherals: Case study with C6713 DSK

Arpine Soghoyan and David Akopian
The University of Texas at San Antonio

Abstract

The modernization of Global Positioning Systems (GPS)
and the availability of more complex signals and
modulation schemes boost the development of civil and
military applications while the accuracy and coverage of
receivers continually improve. Recently, software
defined receiver solutions gained attention for flexible
multimode operations. For them, developers address
algorithmic and hardware accelerators or their hybrids
for fast prototyping and testing high performance
receivers for various conditions. This paper presents a
new fast prototyping concept exploiting digital signal
processor (DSP) peripherals and the benefits of the host
environment using the National Instruments (NI)
LabVIEW platform. With a reasonable distribution of
tasks between the host hardware and reconfigurable
peripherals, a higher performance is achieved. As a case
study, in this paper the Texas Instruments (TI)
TMS320C6713 DSP is used along with a Real Time
Data Exchange (RTDX) communication link to compare
with similar Simulink-based solutions. The proposed
testbed GPS signal is created using the NI PXI signal
generator and the NI GPS Simulation Toolkit.

Keywords: GPS receiver, NI LabVIEW, SDR, A-GPS,
RTDX

1. Introduction

The US GPS is one of the existing Global Navigation
Satellite Systems (GNSS) that provides the end user with
improved position, velocity and time solutions.
GPS/GNSS receivers continually evolve by
progressively modernizing conventional algorithms and
implementation platforms for faster operation and
development. In our previous work (Akopian et al.,
2011) it was mentioned that major challenges of
advanced receiver development, especially in academia,
are system development complexity, long development
cycles, RF front-end and hardware accelerator interfaces
for real-time processing, and access to end-to-end
development and testing platforms.

While GNSS systems perform very well in strong signal
conditions, their operation in many urban and indoor
applications is difficult or impossible due to weak
signals and strong distortions. The modernization of
existing and new signals and modulation schemes adds
to system complexity; challenging the research
community to explore new algorithms and methods.

The urban and indoor applications of the GPS/GNSS
receiver operation are based on the technology called
Assisted GPS/GNSS (A-GPS/A-GNSS) (Misra, Enge,
2001), (Agarwal et al., 2002), (Wireless E911 location
accuracy requirements, 2012), (Zhao, 2002). In this
approach, wireless channels are used to deliver aiding
data to receivers, which they would normally need to
receive and demodulate from weak GPS satellite signals.
Assisted technology improves sensitivity and operational
coverage of receivers. A-GPS and its hybrids are
considered the best global positioning technologies for
wireless devices; as a result A-GPS is standardized for
all wireless networks (Wireless E911 location accuracy
requirements, 2012), (Zhao, 2002).

Figure 1: An example of various hardware/ software
configurations in a commercial receiver product line
(Fastrax, 2012).

With higher-level receiver requirements, one should
address more and more complicated phenomena and
typically, state-of-the-art receivers should be flexible to

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

128

perform multimode tasks for operating in various
conditions. The developers need reference receivers,
associated software development kits (SDK),
development platforms, simulators, and testbeds to
accelerate and facilitate their research. Even in assisted
mode, GPS receivers need massive correlators to
enhance received signals by combining multiple received
signal copies and accelerating computations. A popular
solution for flexible multimode operations is an SDR
receiver (Akos, 2003), where real-time correlators,
tracking loops, and navigation calculation are all
implemented in software or using general purpose
accelerators such as FPGA and DSP peripherals.
Massive correlators are implemented using fast
algorithmic solutions or deployed on accelerators. Fig. 1
illustrates relative costs and various hardware-software
configurations (Fastrax, 2012) for GPS receivers and the
increased role of central processing units (CPU) in SDR
solutions. Software GNSS receivers require fewer
hardware components, offer significant flexibility
compared to conventional receivers with correlators
implemented on dedicated application-specific integrated
circuit (ASIC) technology, and are convenient for faster
prototyping and academic research.

The paper elaborates several benefits of using NI
LabVIEW (LabVIEW, 2012) as a host platform for fast
receiver development, prototyping, simulation, testing,
and implementation of A-GPS (Zhao, 2002) support.
This paper systematizes and extends an initial feasibility
study of LabVIEW-based receiver development
(Akopian et al., 2011) where it was shown that a
LabVIEW-based receiver is an attractive alternative
from a performance point of view and facilitates
interfacing with RF front-ends. In this paper, we also
demonstrate options on how a LabVIEW-based receiver
can connect to DSP accelerators. A dedicated NI
LabVIEW-based A-GPS support is also developed to
generate assistance data for available satellites (Akopian
et al., 2011).

For DSP accelerator implementation, the Code
Composer Studio (CCS 3.1) C6713 Device Functional
Simulator from TI is used. The peripheral connects to the
NI LabVIEW environment through the RTDX (Code
Composer Studio, 2012) interface. Comparison of the
algorithm performance is done between LabVIEW
receiver and complete Simulink receiver implementation
as described in (Hamza et al., 2009).

The paper is organized as follows. Section 2 summarizes
the GPS system architecture including
hardware/software components. Section 3 describes the
NI LabVIEW-based testbed including NI GPS Simulator
Toolkit and A-GPS support. Section 4 overviews the
advanced algorithms implemented in our case study.
Section 5 presents DSP target compilation support in the
LabVIEW environment. Section 6 gives the detailed
implementation description of the GPS receiver with the
A-GPS support. Section 7 provides conclusions.

2. Software Defined Radio Concept For GPS

Receiver Development

Fig. 2 shows a generic GPS/GNSS receiver architecture
design where all of the signal-processing tasks can be
implemented on software, eliminating hardware
accelerators. The software receiver design offers high
flexibility for implementing various algorithms without
constraints imposed by fixed hardware architectures and
is convenient for multimode operations in challenging
environments.

Examples of SDR are the gpsSrx receiver (Akos et al.,
2001) and NavX-NSR (Heinrichs et al., 2007), and for
the open source PC-based GNSS SDR systems there are
examples described in (Borre et al., 2006), (GPS-SDR,
2012). Proprietary or open source toolkits are also
developed by incorporating new components in existing
GNSS receiver solutions. Examples of toolkits range
from Matlab-based (Matlab, 2012) receiver solutions to
C/C++ based open source (Borre et al., 2006) and
commercial systems (Fastrax, 2012), (Akos et al., 2001),
(Heinrichs et al., 2007).

High performance conventional GPS/GNSS receivers
rely on ASIC technology to implement massive
correlators, as the performance of SDR solutions is still
limited. This provides for high performance but limited
reconfigurability compared to SDR receivers.
Complementing SDR receivers with programmable
hardware such as DSPs and FPGAs provides for a trade-
off between acceleration and reconfiguration. ASIC
hardware implementation requires long development
cycles and additional hardware-software interfacing
efforts, while FPGA and DSP development cycles are
shorter due to convenient development tools and
standard interfacing means.

Figure 2: Schematic structure of a GPS receiver. Hardware accelerators are often completely excluded in software
defined GPS

Frequency
Down-

conversion
(RF-to-IF)

Analog-to-
Digital

Conversion
(ADC)

Acquisition & Tracking

Software Hardware
UI

Navigation
Algorithm

Software

Antenna

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

129

Table 1: Advanced Development-Testing Toolkit to Facilitate Research and Dissemination (Akopian et al, 2011)

Components Benefits

• An integrated platform using
popular NI RF/PXI equipment, NI
GPS simulator and LabVIEW
software to facilitate algorithm
research and performance analysis

• LabVIEW algorithmic libraries:
conventional receiver algorithms;
Advanced algorithms; Advanced A-
GPS support

• Low-cost real-time processing platform with available RF
Front-end interfaces and rich algorithmic libraries

• Dataflow and/or C/C++ programming, available profiling
tools to estimate performances, built-in user interface
design and visualization tools

• Easy access to RF and I/Q sampled signals from NI
LabVIEW-based GPS simulator

• UTSA SUPL standard-based A-GPS support

• Build-in compilers for target platforms such as DSP
processors and FPGAs

Table 2: LabVIEW DSP Hardware and Software Support

DSP Hardware Targets Supported by
NI LabVIEW DSP Module NI Software Support for DSP Targets

• TMS320C6711 DSK
• TMS320C6713 DSK
• NI’s SPEEDY-33

• LabVIEW DSP Module
• LabVIEW DSP Test Integration

Toolkit
• TI DSP application as an external

application in LabVIEW

This paper focuses on GPS receivers with DSP
peripherals specifically optimized for the efficient
execution of common signal processing tasks. DSPs are
microcontrollers designed specifically for signal
processing applications. Unlike ASICs, DSPs are not as
efficient in terms of speed and power consumption.
However, they are characterized by their flexibility and
ease of programming. Examples of the highly sensitive
GNSS receivers using DSPs are receivers in (Girau et
al., 2007), (Cetin et al., 2007). DSP-based solutions
might be slower but still allow for high throughput
correlator implementations with a shorter development
cycle, using e.g., Fast Fourier Transform (FFT)
algorithms.

3. NI LabVIEW-Based Testbed for GPS SDR

Development

Table 1 summarizes the benefits for choosing a
LabVIEW environment as a GPS receiver development
platform. NI LabVIEW provides hundreds of built-in
libraries for advanced development, analysis, and data
visualization. It is convenient for fast algorithm
prototyping and testing, comparative studies, real-time
performance evaluation and dissemination. LabVIEW
has integrated interfaces to various hardware peripherals.
It also supports multithreading and multicore
programming, which is useful for real-time applications.

These advantages already have been used in other radio
communication systems (Developing an OFDM
Transmitter, 2012), (Prototyping Algorithms for Next-
Generation Radio Astronomy Receivers, 2012).

The algorithms in LabVIEW can be implemented using
LabVIEW library modules, Mathscript nodes using
Matlab scripts for fast prototyping, and C/C++ language
for fast processing. LabVIEW-based implementation can
be transformed to C/C++ implementation for open
source and commercial solutions using
LabWindows/CVI (NI LabWindows/CVI, 2012).
LabWindows/CVI supports convenient interfaces with
peripheral instrumentation, and provides graphical user
interface (GUI) design tools.

Aside from the instrument control with NI hardware,
LabVIEW also has support for external hardware
peripherals to accelerate research and simulation of SDR
development. As already mentioned, the hardware
accelerators such as DSPs and FPGAs can be integrated
with LabVIEW (Soghoyan et al., 2011). There are
different integration modes. The easiest solution for
developers is to transform a LabVIEW data flow
schematic into a DSP code using a NI LabVIEW DSP
Module. Only a few DSPs are supported by this software
as listed in Table 2. Alternatively, the connection with
many other DSPs can be performed in a conventional

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

130

Figure 3: Integrated receiver architecture with hardware front-end, A-GPS support, LabVIEW DSP and LabVIEW
FPGA targets

way, connecting a DSP application to LabVIEW using
RTDX communication tools. This is accomplished
through software support called NI LabVIEW Test
Integration Toolkit. Another option is to use dynamic
linked libraries (dll) to call the CCS standalone
application externally in the LabVIEW environment
using “Call Library Function Node” functionality.

The initial system architecture for the real-time GPS
receiver LabVIEW-based testbed first has been
presented in (Soghoyan et al., 2011). Fig. 3 illustrates an
enhanced version of the system, which provides A-GPS
assistance delivery support, channel modelling extension
for the NI GPS simulator, and FPGA/DSP accelerators.
Details about FPGA integration will be described in
another paper. The transmitter’s RF front-end consists of
an antenna and NI PXIe-5673 RF vector signal generator
(VSG), which can be configured to generate various
GNSS signals. The GPS signal is generated using a
LabVIEW-based NI GPS Simulation Toolkit
(LabVIEW, 2012). Receiver RF front-end consists of an

antenna, a variable gain amplifier (variable gain up to
30dB) (GPS Networking, 2012) and NI PXIe-5663RF
vector signal analyzer (VSA). It is connected to a
computer running a LabVIEW-based software defined
GPS receiver. Optional hardware DSP/FPGA peripherals
are accessible through LabVIEW interfaces.

The dedicated LabVIEW-based A-GPS support is
integrated with NI GPS Simulation Toolkit. The
simulator generates signal using ephemeris and almanac
orbital parameters for all of the selected satellites.
Proposed A-GPS support encapsulates the binary
navigation data into assistance data, which are
communicated by an assistance server to receivers. The
process follows the guidelines of A-GPS assistance
delivery according to Secure User Plane Location
(SUPL) (Open Mobile Alliance, 2007), which defines
the assistance delivery format and communication
between the user (client) and SUPL server. SUPL is the
Internet Protocol (IP)-based network service to deliver
information through a User Plane bearer between a

Preamplifier
VGLCDLA30

NI 5673 RF Vector
Signal Generator

NI 5652 LO

Source
NI 5611 I/Q
Modulator

NI 5450
AWG

NI 5663 RF Vector
Signal Analyzer

GPS Receiver

NI 5601 RF
Down

converter

NI 5622 IF
Digitizer

NI 5652 LO
Source

GPS Simulator
Toolkit 2.0

Host Server (PC)

NI LabVIEW (2010)

SUPL Server

Assistance Data
Generation
(ASN1)

PER
Encoding/Decoding

Network

Client (Laptop)

NI LabVIEW (2010)

SUPL Agent

Channel

1. Java2ME
PER Encoding/Decoding
2. SUPL Messages (See
Fig.15)

LabVIEW
DSP Target

LabVIEW
FPGA Target

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

131

SUPL enabled terminal (SET) (e.g. mobile devices) and
a SUPL location platform (SLP) (e.g. A-GPS servers) for
wireless communications developed by OMA (Open
Mobile Alliance, 2007). A detailed description of an
assistance data delivery solution can be found in
(Narisetty et al., 2012).

3.1 Front-End GPS signal simulator and transmitter
The NI GPS Simulation Toolkit (LabVIEW, 2012) along
with NI 5673 VSG is enabling the generation of one to
twelve satellite signals with a waveform duration of up
to 12.5 minutes (25 frames) which is the duration of an
entire navigation message.

The main features of the GPS Simulation Toolkit are the
following:
- Generation 24 hours of up to 12 satellite C/A codes.
- Power adjustment levels of each satellite based on

the testing specifications (-145dBm to +10dBm).
- Direct streaming generation with either of those

o Wide Area Augmentation System (WAAS)
o Trajectory scripts
o On the fly parameters
o Stored file

- Use the recorded stream of a simulated signal along
with the NI RF vector signal generator for reliable
and low-cost GPS testing.

Additional selected simulator features are listed in Table
3. The first example application has a common interface
with the rest of the examples. The simulator determines
visible GPS satellites based on the almanac and
ephemeris files, GPS time, and receiver location
specified. The simulator provides for satellite power
control and WAAS availability concurrently with GPS
signal. The toolkit simulates only those user-specified
WAAS satellites that are present in the WAAS GEO file
that can be downloaded from (WAAS Test Team, 2012).

The simulator generates baseband GPS L1 band signals
with a sampling rate of 1.5MS/sec (“IQ interleaved
integer 16” data type). The almanac and ephemeris files
necessary for the signal generation contain satellite orbit
parameters and related information, which are used to
estimate satellite locations, trajectories, and health for a
specific date and time (Misra, Enge, 2001), (Kaplan,
1996). The almanac and ephemeris file types, content
and location are described in (Almanac information,
2012), (Ephemeris information, 2012). Channel models
can be developed in LabVIEW and integrated with the
toolkit. The proposed testbed shown in Fig. 3 integrated
Urban Three-State Fade Model (UTSFM) channel model
(Ma et al., 2001) as described in (Soghoyan et al., 2011).

Table 3: GPS Simulation Toolkit 2.0 Programming and Interactive Applications

Example Application Description

niGPS Adjust Satellite Power

This example takes as an input Receiver location, Almanac and
Ephemeris files, Initial GPS Time of Week, Initial speed of the
receiver(m/s), Maximum number of optimal satellites, and
dynamically adjustable power of individual satellite and provides
as an output GPS L1 band signal (Fig. 4) using the hardware
resource specified. WAAS GEO files can be added to the
simulation if the control is enabled.

niGPS Direct Streaming Generation with WAAS
This example is similar to the first one in addition WAAS
satellites are augmented to GPS L1 signal given the WAAS file
path.

niGPS Write Waveform To File (Single
Satellite,Manual Mode)

This example takes as an input almanac and ephemeris files,
number of frames, PRN number of an individual satellite with its
Doppler shift, pseudorange and waveform scaling factor providing
as an output the bits of GPS L1 signal in a binary file specified by
the user.

niGPS Write Waveform to File
(Simple,Automatic Mode)

In this example optimal satellites available are automatically
selected based on the inputs of Receiver location, Almanac and
Ephemeris files, Initial GPS Time of Week. The output is a binary
file containing GPS L1 signal.

niGPS Streaming From File This example inputs a binary file with GPS L1 band signal which
is then streamed using NI RF vector signal generator.

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

132

Figure 4: Software GPS/GNSS receiver architecture

4. GPS Receiver Signal Processing

The conventional L1 civilian GPS signal is a direct
sequence spread spectrum (DSSS) signal consisting of a
multiplication of a sinusoidal carrier at 1.57542 GHz, a
binary phase shift keying (BPSK) navigation signal at
50Hz, and BPSK modulated spreading pseudorandom
code signal (PRN) at 1.023 Mchips/sec. The spreading
sequence is called the C/A (coarse acquisition) code. The
generated signal is transmitted through a channel
described in (Misra, Enge, 2001).

The ultimate goal of a GPS receiver is to provide
position, velocity, and time information. For that,
receivers measure range, range-rate, and demodulate
navigation data. Range and range-rate measurements are
extracted by synchronizing locally generated replicas of
the code with the received signal. This synchronization
is performed in frequency by estimating Doppler
modulation, and in time, by aligning the signal and
replica and estimating their relative shift called code-
phase. The synchronization typically is performed in two
phases: acquisition (coarse) and tracking (fine). These
two modules constitute a baseband processing stage.
After the synchronization, navigation data are simply
obtained through sinusoidal carrier and PRN code wipe-
off. Navigation data contain time stamps, which, along
with code phases, are used to estimate ranges to
satellites. Navigation data also contain orbital
parameters, ephemeris and almanac, which are used to
find satellite positions provided time. These parameters
can alternatively be received using assistance from
wireless networks as described later in the paper.
Satellite positions serve as beacon locations for
trilateration using ranges. The baseband configuration
for a software receiver (Fig. 4) follows the processing
chain of conventional receivers (Fig. 2).

Receiver operation is implemented using the modified
version of the application from the LabVIEW build-in
examples’ package called “RFSA Acquire Continuous
IQ.vi.” Here the incoming signal is of integer 16 IQ

interleaved format, which then is converted into integer
8 datatype for faster receiver processing. The settings
chosen for the signal acquisition are the following; the
IQ sampling rate is 4.092MS/s, the reference power level
is adjustable, the GPS carrier signal frequency is
1.57542GHz, and the number of samples to read per
each block of the received signal is 81840. Reference
power level adjustment was done according to (GPS
Receiver Testing, 2010), (GPS Multiplie Satellite, 2012).

4.1 Acquisition
The first stage of baseband signal processing is the
acquisition of a satellite. A receiver replicates a code and
a residual carrier signals matching those to the received
signal in a two-dimensional search process.
Conventional receivers achieve acquisition by searching
over a predicted time-frequency uncertainty zone.

Multiple possible signal replicas are generated and
correlated with received signal to find a match and thus
to identify input signal parameters. A statistical test is
applied to the correlation results to determine if a signal
acquisition has been reached or not. If it has been, the
acquisition is terminated and the receiver starts the
tracking stage for that satellite; if not, the search
continues and moves to the next code-phase/frequency
option.

4.2 Tracking
In the tracking stage, the residual code and carrier shifts
are estimated using correlators, discriminators and a
feedback loop to reduce signal misalignment adaptively.
The code tracking loop called delay lock loop (DLL) and
a carrier tracking loop called phase/frequency locked
loop (PLL/FLL) are used for consecutive fine alignment
of received and replicated signals. The DLL loop aligns
the incoming signal with the local PRN replica for code-
phase estimation. In the conventional systems, several
replicas are used with shifted relative phases, e.g. three
replicas early, prompt and late with a code-phase spacing
of ±1/2 chip are used by slightly shifting code replicas.
The correlation outputs are fed into a discriminator,

Radio Front end

GNSS radio
front end Buffer

Acquisition

Tracking

Code
Tracking

Carrier
Tracking

Navigation
Processing

User
Interface

General Purpose
Processor

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

133

which defines the relative shift of the received signal
with respect to the prompt replica. Then the feedback
from the discriminator is used to adjust the code phases
of local replicas. In PLL/FLL (Misra, Enge, 2001) the
output of the ‘prompt’ correlator connects to the
discriminator of the carrier loop with the phase
estimation between I and Q components. The PLL loop
consecutively estimates phase mismatch and adjusts the
locally generated residual carrier replica to minimize Q
component. Phase changes indicate the presence of a
residual sinusoidal modulation, and the PLL
discriminator estimates this presence and instructs to
adjust replica residual carrier frequency. Typically,
filters are used to smooth discriminator outputs and
avoid DLL/PLL loop overreactions.

4.3 Advanced correlators
Both acquisition and tracking algorithms use correlators
to synchronize the incoming signal with the local replica.
Typically, there is an element-wise multiplication of the
received samples with the samples of each replica and
eventually the products are integrated for the result. So-
called block correlators are implemented to reduce the
computational loads performing shared computations.
Examples of state-of-the-art block correlators are

(Akopian, 2005) for acquisition (Fig. 5), and (Sagiraju et
al., 2008) for tracking (Fig. 6).

Figure 5: Block correlator for acquisition, coherent
integration length is N2 code periods (N1 N2 samples for
N1 samples per code period)

Figure 6: Block correlator structure for tracking. An example with three replica sequences; sub-sum combining

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

134

Figure 7: (a) Acquisition result of a single satellite using LabVIEW Visualization Tools. (b) The signal strengths and
PRNs of the acquired satellites. (c) Bits of the navigation message for a single satellite

The block correlators for acquisition efficiently perform
a parallel joint search in three dimensions: code phase,
Doppler frequency, and satellite number using e.g. FFT.
In (Sagiraju et al., 2008), many frequency search steps
are implemented through iterations in the frequency
domain; a long FFT is computed once, while shorter
inverse FFTs are computed for each Doppler frequency
and satellite.

The tracking block-correlator concept (Sagiraju et al.,
2008) implements several correlators jointly in the time
domain. Early-Late-Prompt replica sequences are
transformed to a set of addresses pointing to a set of
registers that accumulate partial correlations. Each
incoming sample is added to a register as referred by the
address array. Then these partial sums are combined as
shown in Fig. 6. The acceleration is achieved by only
one addition per sample for all three correlators plus a
controlled overhead due to partial correlation integration.
Overhead is not significant for three correlators. The
tracking loop iterations are modified to make use of the
block correlator concept. The DLL discriminator outputs
estimate the misalignment of the incoming signal with
the prompt code. As replicas are fixed, the code phase
adjustments are performed by aligning the received code
front edge with the front edge of the prompt replica
code. Considering received signal as an array of data,
one should shift a pointer to the start of the C/A code
back and forth (Winternitz et al., 2004). These block
correlators use only additions, which result in essential
computational savings. Fig. 6 shows the combined
carrier and code tracking loop.

In our case study, coherent integrations of 8ms of signal
are used for advanced acquisition implementation. This
allows determining the availability of the visible
satellites with their code-phases and frequencies. The
PRN code replicas for 24 satellite codes are stored in a
2D array for faster access. The correlation result will
provide a 2D search over all Doppler frequencies and
code phases and whenever there is a match between

incoming signal and the local replica there will be a peak
like the one shown in Fig. 7(a). The examples of signal
strengths (dBHz) for detected satellites are shown in
Fig.7(b). Therefore, once the outputs of the acquisition
stage are available we can proceed to the tracking
algorithm.

The tracking algorithm implemented in the paper works
for the sampling rate of 4.092 MHz. For the advanced
tracking, these samples are integrated further to reduce
the sampling rate to 2.046MHz. To avoid real time
generation of the carrier wave a fixed sinusoid array is
created to generate various Doppler modulation
compensating sinusoids through the saved sinusoid
decimations and cyclic array reading. The generated
sinusoids are multiplied to the input signal to wipe-off
the carrier. The resulting samples are accumulated into
eight partial correlations (subsums). Fig. 7(c) illustrates
the navigation message decoded in the tracking stage.
The navigation databits and measurements are passed to
position a computation module. In this implementation a
conventional least squares positioning algorithm is used
(Agarwal et al., 2002).

5. DSP as a Hardware Accelerator

As a user-friendly graphical programming language
LabVIEW makes it easier to build DSP systems with fast
application prototyping and deployment. It also allows
creating reusable subvis; code blocks with input(s) and
output(s). The NI LabVIEW environment connected
with a LabVIEW DSP Module provides a hands on
experimental learning environment for novice users, and
self documenting, easily maintainable environment for
professionals.

TI TMS320C6713 DSP starter kit (C6713 DSK) (TI
TMS320C6713 DSP, 2012) is used as a case study. It
has 512K Flash and 16MB SDRAM memories, which
will be sufficient for the advanced acquisition algorithm

(a) (b) (c)

(c)

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

135

development. The property list of C6713 includes the
following (Texas Instruments, 2011):
• C6713 operates at 225 MHz.
• 16 MB synchronous DRAM.
• 512 KB non-volatile Flash memory (256 KB usable

in the default configuration).
• Software board configuration through registers

implemented in a Complex Programmable Logic
Device (CPLD).

• Standard expansion connectors for daughter card
usage.

• Joint Test Action Group (JTAG) emulation through
an onboard JTAG emulator with USB host interface
or external emulator.

The functional block diagram with given features is
shown in Fig. 8. Real-time bidirectional data exchange
between host and target DSPs is maintained through a
JTAG interface using the RTDX channel communication
(Chassaing, Reay, 2008).

Figure 8: Functional block diagram of the C6713 DSK
(Benveniste et al, 2010)

Two different approaches to operate NI supported DSP
boards in a LabVIEW platform are described in detail
below. The target requirement platform is selected to be
NI LabVIEW 2010 version. The DSP hardware/software
installation is done according to (TI TMS320C6713
DSP, 2012).

5.1 LabVIEW DSP module
The first option is to use a LabVIEW DSP Module to
create a DSP project (shown in Fig. 9) in a LabVIEW
environment according to (NI LabVIEW DSP, 2012).
Here the idea is to “automatically” map a LabVIEW
design into a DSP code. The LabVIEW DSP Module
identifies the available hardware I/O points from the
supported hardware and it can easily switch between
existing DSP targets if needed. The DSP module also
allows deploying and running the application in a
standalone mode. The NI LabVIEW DSP Module has a
limitation to work only with three types of targets; NI
SPEEDY-33, TI C6711 and C6713 DSKs. There are also
other constraints. For example, by default, the NI
LabVIEW DSP Module uses Flash memory of the target.

Due to the memory constraint, only smaller tasks can be
delegated to the DSP. In addition to that, target
performance and memory profiling are disabled on the
specified DSP peripherals. We succeeded at
developing a single satellite acquisition with 1ms
coherent integration length of an input signal sampled at
1.024MHz sampling rate.

Figure 9: View of a Project Explorer in NI LabVIEW
environment

A portion of the acquisition code implementing the FFT
on the DSP module is depicted in Fig. 10 to demonstrate
the concept. “EMB Real FFT” DSP Module function is
used for the application development according to the
advanced acquisition algorithm described in Section 4.
The inverse FFT is also done using the same “EMB Real
FFT” function.

The second approach described below is able to utilize
additional external memory resources and is applicable
to a broader set of DSP targets.

5.2 LabVIEW DSP test integration toolkit
The more general second option is called a LabVIEW
DSP Test Integration Toolkit (NI LabVIEW Test
Integration Toolkit, 2012). The supporting libraries can
be downloaded from (NI LabVIEW Test Integration
Toolkit, 2012). A LabVIEW DSP Test Integration
Toolkit allows third party DSP target code integration
into the LabVIEW environment, e.g., using a TI CCS
Integrated Development Environment (IDE) to create
test systems for DSP target development. CCS is the
programming, building, and debugging interface of TI
DSPs. To configure a platform and make a basic setup of
the CCS v3.1 project using RTDX library functions refer
to (TI TMS320C6713 DSP, 2012), (TMS320C6000
Code Composer Studio Tutorial, 2012). Once the project
is created in Projects-Build Options-Linker the
configuration is set up in the following way.

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

136

Figure 5: Acquisition algorithm implementation in LabVIEW environment

These are the supporting libraries to implement RTDX
communication, FFT operations, compilation on the
C6713 DSK target, etc.

The source codes must be added in order to run the CCS
application. To run the code follow the following steps:

Alternately, the same process automated in LabVIEW is
done using six advanced RTDX libraries: CCS Halt VI,
CCS Close Project VI, CCS Open Project VI, CCS
Download Code VI, CCS Build VI, and CCS Run VI.
The .pjt file path is wired to the CCS Open Project VI to
open the .pjt file in CCS IDE. The CCS Build VI builds
the .pjt file (created in CCS v3.1) to create the DSP
target code .out file. The CCS Download Code VI
downloads the .out file to the development board. The
CCS Run VI runs the embedded .out file on the
development board. The RTDX communication and the
memory VIs enable accessing data from the target code.
RTDX is available on XDS510 and XDS560 class
emulators (TMS320C6000 CCS Tutorial, 2012).

CCS IDE allows advanced debugging options, memory
map, and a graphical view of the data in the project. In
this paper the acquisition algorithm is heavily based on
FFT (see Fig. 5) and a TI’s C Callable Optimized FFT
Function (Chassaing, Reay, 2008) is used.

For illustration purposes a fragment of the TI’s C
Callable Optimized FFT Function used in the CCS
project is given below:

1. File→Load→Program→Select the “.out”
under debug folder.

2. Debug→Reset CPU
3. Debug→Restart
4. Debug→Go Main
5. Debug→Run

-c -heap10000 -m".\Debug\t2h.map" -
o".\Debug\t2h.out" -stack10000 -w -x -
i"C:\CCStudio_v3.1\C6000\\dsk6713\include" -
i"C:\CCStudio_v3.1\C6000\cgtools\include" -
i"C:\CCStudio_v3.1\C6000\csl\include" -
i"C:\CCStudio_v3.1\c6700\dsplib\support\fft" -
i"C:\CCStudio_v3.1\c6700\dsplib\include" -
l"rts6700.lib" -l"rtdx.lib" -
l"C:\CCStudio_v3.1\C6000\dsk6713\lib\dsk6713bs
l.lib" -
l"C:\CCStudio_v3.1\C6000\csl\lib\csl6713.lib"

http://processors.wiki.ti.com/index.php/XDS560

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

137

TI’s radix - 2 optimized FFT function (cfftr2_dit), the
function for generating the index for bit reversal
(digitrev_index), and the function for the bit-reversal
procedure (bitrev) are used.

For the external memory usage of the target a linker file
is created (Fig. 11). The linker file provides general
memory structure defined in the MEMORY section with
designated origin and length. The directive SECTIONS
allocate the application code sections into predefined
memory locations. More information about the linker file
structure is found in (Chassaing, Reay, 2008). The 24
shifted replica codes used by FFT-based acquisition in
this paper are stored in the header file and added to the
CCS project. The full acquisition algorithm is
implemented completely on the C6713 target and called
into the LabVIEW using RTDX communication.

The input and output RTDX channels are enabled in
CCS using “rtdx.lib” library functionalities:

Figure 11: Linker command file for acquisition
algorithm with external memory configuration

Once the channels are enabled the incoming IQ signal
with the sampling rate of 2.048 MHz is transferred into
the target with the RTDX_read() command and then the
results of the acquisition stage are obtained, e.g.; the
code phases and Doppler frequency shifts within the
±10Khz frequency range for all 24 satellites. These
results are written into RTDX channel using a
RTDX_write() command:

 ⋮

 ⋮

{

while(!RTDX_read(&cinput, input, sizeof(input)));

/* Wait for Target-to-Host transfer to complete */
if (!RTDX_write(&coutput, &csat, sizeof(csat)))
{
fprintf(stderr, "\nError: RTDX_write() failed!\n");
abort();
}
while (RTDX_writing != NULL)
 {
#if RTDX_POLLING_IMPLEMENTATION
 RTDX_Poll();
#endif
 }
 }
RTDX_disableOutput(&coutput);
RTDX_disableInput(&cinput);}

RTDX_CreateInputChannel(cinput);
RTDX_CreateOutputChannel(coutput);
void main()
{
// Target initialization for RTDX
TARGET_INITIALIZE();
/*enable RTDX channels*/
RTDX_enableInput(&cinput);
RTDX_enableOutput(&coutput);
}

// N ->number of complex samples,
// Radix = 2;
for(i = 0 ; i < N/RADIX ; i++)
// declare the FFT coefficients
{
W[i].re = cos(DELTA*i); //real component of W
W[i].im = sin(DELTA*i); //neg imag component
}
digitrev_index(iTwid, N/RADIX, RADIX);
bitrev(W, iTwid, N/RADIX); //bit reverse W
//get the real and imaginary of the input signal
for (j = 0; j < N; j++) {
x[j].re = values_re[j]; // I component
x[j].im = values_im[j]; // Q component
}
cfftr2_dit(x, W, N) ; //TI floating-pt complex FFT
digitrev_index(iData, N, RADIX);
bitrev(x, iData, N); //freq scrambled->bit-reverse x

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

138

Once the results are verified in the CCS environment the
NI LabVIEW RTDX support application can be created.
The block diagram in Fig. 12 shows how to automate the
process of compiling DSP target code and embedding
the code on a development board in LabVIEW as
explained earlier.

The input signal is transferred to the DSP target using
“CCS RTDX Write Array I16.vi.” The streaming from
the target to the host is done using “CCS RTDX Read
SGL.vi.” To be able to run the RTDX streaming for
more than 1024 bytes the RTDX buffer size should be
modified as follows (Code Composer Studio, 2012).

1. In CCS, Tools-RTDX-Configuration Control is
selected to display the RTDX-Configuration
Control window.

2. The enable RTDX checkbox is not selected to
ensure that RTDX is disabled.

3. The configure button is used to access the RTDX
Configuration Control Properties page.

4. In the Buffer Size (in bytes) field, the desired
buffer size is specified.

5. In the Number of Buffers field, the desired number
of buffers is entered. By default, the number of
buffers is set to 4, which is the minimum. With a
multiprocessor configuration, the total number of
buffers must be equivalent to or greater than the
total number of processors being used with RTDX.
RTDX requires a unique buffer for each processor.

6. For configurations to take effect, click OK.
7. In the RTDX-Configuration Control window, click

the Enable RTDX checkbox to enable RTDX.
8. Build the project.

Another approach is to use TI CCS embedded in NI
LabVIEW, which provides full control over the target
capabilities. Here a dll is created given the newer
versions of CCS (starting from CCS v4.1), which then

can be called in NI LabVIEW using the “Call Library
Function Node” functionality that in turn eliminates the
use of RTDX communication link. Table 4 summarizes
these techniques and ranks their implementation
complexity.

Table 4: Summary of the Methods

Tool Functionality Development
Complexity

NI LabVIEW
DSP Module

1. Limited
Functionality
2.No Access To the
External Memory of
the board for more
complex algorithm
development
3. NI LabVIEW
Profiling Tools
disabled – only
benchmarking is
possible

Low

NI LabVIEW
Test Integration
Toolkit

1. Enables
functionality of TI
CCS along with NI
LabVIEW
environment
2. Requires knowledge
of prior CCS
development
3.Currently officially
not supported by NI

Medium

TI Code
Composer Studio
embedded in
LabVIEW

1.Full access to the
board memory
2. Full functionality of
NI LabVIEW
3. Requires knowledge
of prior CCS
development

High

Figure 12: Acquisition algorithm implementation fragment in LabVIEW environment using RTDX streaming to get the
FFT of the input signal.

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

139

Table 5 shows the timing performance on different
platforms for the advanced acquistion algorithm
implemented for 24 satellites with the sampling rate of
2.048 MHz. The coherent integration length is 1ms. The
code is not fully optimized and mainly depends on the
programming platform capabilities (e.g., multithreading,
multicore operation, CPU speed). Fig. 13 provides a
sample of profiling results on how timing statistics are
collected in Table 5. Several implementation options are
considered for the analysis. First, an acquisition
algorithm is implemented in C/C++. The code is not
optimized, and accelerations are only due to a fast block
processing algorithm. The algorithm completes in 0.25
seconds. Then the algorithm is implemented as a dll in
MS Visual Studio C++ and called in NI LabVIEW using
“Call Library Function Node” functionality. This is done
for comparison purposes to check the overhead that
LabVIEW environment may introduce over C/C++ only
implementation. The algorithm runs in 0.28 seconds. The
timing performance is critical for software receiver
development, and one can see that LabVIEW is not
adding significant overhead over the C code
implementation, about 10% in this particular scenario.

Table 5: Advanced Acquisition Algorithm Testing

Platform Acquisition
Time (sec)

FFT Time
(sec)

Stadalone C/C++. MS
Visual Studio 2008 0.25 0.016

LabVIEW+DSP. Single
Precision floating point
radix-2 FFT with
complex input function
called in NI LabVIEW
using RTDX

0.031 0.001

Implementation using
native LabVIEW blocks 0.058 0.004

Calling dynamic linked
library in NI LabVIEW
created with MS Visual
Studio C++

0.28 0.016

Figure 13: Profiling results for the target compilation timing statistics.

Then, the acquisition algorithm is implemented using
LabVIEW native blocks. Interestingly enough the
performance improves as the blocks are optimized and
all other LabVIEW acceleration factors apply. The
algorithm runs in 0.06 seconds, accelerating almost 5
times. When delegating the acquisition algorithm from
LabVIEW to DSP peripheral the overall runtime of the
.vi that performs the acquisition algorithm in CCS IDE
using a bidirectional RTDX communication link is about
0.03s, which is twice as fast as the same algorithm
implemented on LabVIEW only. The operation must be
even faster, but an RTDX communication link is quite

slow when transferring big arrays of data. In all
scenarios, the results achieved in these case studies are
exceeding by far the performance of the acquisition
algorithm implemented on the C6713DSP through
Simulink (Hamza et al., 2009). In (Hamza et al., 2009)
the result for the multiple satellite acquisition for the
sampling rate of 4.092Mhz and the intermediate
frequency of 2.046MHz gives the maximum
performance of about 17s. The same acquisition
algorithm implemented in Matlab by Borre and Akos
(2006) takes 183s having the intermediate frequency of
the incoming signal as 9.548MHz and the sampling rate

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

140

as 38.192MHz. Table 5 shows also the FFT times taken
on different platforms. It shows that the performance of
the DSP target might be significantly higher if not
slowness of RTDX communication.

Table 6 shows the timing statistics with a varying
number of coherent integration lengths on the selected
platforms when the sampling rate is still 2.048MHz. The
LabVIEW application is performing faster according to
the tests and still it’s not adding an overhead to the same
algorithm implemented in MS Visual Studio and called
in LabVIEW as a dll.

Table 6: Advanced Acquisition Algorithm Testing (NI
LabVIEW 2010 is used)

Platform
Input Signal

duration
(ms)

Time
(sec)

Standalone C/C++.
MS Visual Studio
2008

1 0.25
8 1.25
16 2.375

Implementation
using native
LabVIEW blocks

1 0.058
8 0.47
16 0.94

Calling dynamic
linked library in NI
LabVIEW created
with MS Visual
Studio C++

1 0.28
8 1.188

16 2.422

A PC with Intel(R) Core™ i5 CPU M580, 2.67GHz
(4CPUs), 3510MB RAM, Windows XP Professional OS
is used as a GPS simulator and A-GPS generation
platform. NI LabVIEW 2010 version is used as a
development environment along with GPS Simulation
Toolkit 2.0. MS Visual Studio 2008 Team Suite is used
for creating a dll to communicate with LabVIEW.
Performance evaluation of the system in the LabVIEW
environment is done based on (LabVIEW, 2012).

6. LabVIEW GPS/GNSS Receiver Testing with A-
GPS Support

An assisted GPS concept facilitates a GPS receiver
operation in a weak signal environment. It is
standardized for all wireless networks (Zhao, 2002). As
is mentioned in Section 3, one can integrate Labview-
based A-GPS with the NI GPS Simulation Toolkit. For
the case study of this paper, the implementation follows
the guidelines of Secure User Plane Location (SUPL)
architecture (Open Mobile Alliance, 2007) for a mobile-
base network-assisted scenario. It is assumed that the
receivers are equipped with wireless communication
capability to receive assistance from a network. In one of
the possible configurations, this communication is
Internet Protocol (IP)-based to deliver assistance
information through a User Plane bearer between a
SUPL Enabled Terminal (SET), such as a mobile device,
and a SUPL Location Platform (SLP) server. While a
detailed description of an assistance data delivery
solution can be found in (Narisetty et al., 2012), the
following describes a general setup.

Figures 14-16 illustrate the complete experimental setup
to test user devices for A-GPS support. First, the NI GPS
Simulation Toolkit (NI LabVIEW, 2012) generates GPS
binary navigation data for all selected satellites based on
user-defined ‘location’ and ‘time’ along with almanac
files in SEM format (Almanac information, 2012) and
the ephemeris files in RINEX 2.0 format (Ephemeris
information, 2012). These data are used to generate GPS
signals. In our implementation, the simulator is co-
located with the A-GPS SUPL server (SLP). The above-
mentioned binary navigation data is also provided to an
A-GPS SUPL server (SLP), which encapsulates it into
textual assistance files and communicates them to
receivers following SUPL-defined procedure through the
wireless link. Client/Server communication through the
wireless data link is implemented in Java as described in
(Narisetty et al., 2012).

Figure 14: Assistance data generation and flow.

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

141

Figure 15: SUPL message flow (SET initiated)

Figure 16: A block diagram of experimental setup for testing A-GPS support (Narisetty et al, 2012)

Along with the orbital parameters (ephemeris and
almanac) the assistance also includes ‘reference position’
and ‘reference time’ information. The generation of this
data is quite straightforward as the simulator internally
possesses the accurate time and location of the user. So
one can generate these references by user-defined
offsets. The reference location can be alternatively
retrieved using a Cell-ID location provided by
application programming interfaces (API) of mobile
operational systems. Another alternative is to retrieve the
reference location using wireless network addresses such
as WLAN MAC-IDs and IP addresses and existing
databases of network address locations. Details on these
alternatives are presented in (Narisetty et al., 2012).

The SUPL textual files are created in Abstract Syntax
Notation (ASN.1) as described in (UniGone, 2012).
There are five messages going back and forth between
the SET and the SLP in the SUPL architecture as shown
in Fig. 15. Whenever an application running on the SET
requests for position, the SUPL agent on the SET sets up
a secure IP connection with the SLP and initially sends
the start message to the SLP (SUPLSTART), which
contains the user position technology, preference method
and position protocol. The SLP replies with the
SUPLRESPONSE in ASN.1 format including the
session-ID and the positioning method to the SET as a
response message. The SET then initializes the position
session by requesting for the assistance data sending a
SUPLPOSINIT message to the SLP consisting of
supported positioning methods and associated

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

142

positioning protocol. The assistance data (SUPLPOS
message) is delivered to the SET by the SLP wrapped in
the form of a RRLP payload. As long as the SET
receives the orbital assistance message (SUPLPOS), it
can proceed with the calculation of the coarse position
based on the estimated assistance data from the SLP.
Once the SUPLPOS message is received the SLP
informs the SET to end the IP connection by sending a
SUPLEND message for releasing resources related to the
location session (Open Mobile Aliance, 2007),
(Chayapathy et al., 2009).

For wireless communication, the textual files are
encoded in Unalighned Packed Encoding Rules (PER)
(T-Rec-X, 2012) for minimal encoding size using OSS
NOKALVATM runtime libraries and OSS
NOKALVATMASN.1 TO JAVA COMPILER (OSS
Nokalva, 2012) as shown in Fig. 16.

Without A-GPS support there is a need to collect data for
at least three first subframes out of five (6 seconds each),
which is sufficient for decoding a navigation data
fragment for position calculation. However, with the A-
GPS support, we already have the almanac and
ephemeris information decoded; thus, we can proceed to
the position calculation immediately. The GPS receive
should still track the signals to collect code phase
measurements and preferably detect time stamp
locations.

7. Conclusion

The paper describes an integrated LabVIEW-based
platform for GPS/GNSS receiver development and
testing using a simulator, hardware accelerators and A-
GPS support. It is described how to delegate computing
tasks to a DSP peripheral. An advanced acquisition
algorithm is tested on C6713 DSP target platform using
RTDX channel communication. A LabVIEW-based
solution with the DSP target peripheral accelerates
computations significantly compared to the Simulink
GPS receiver developed on the same target (Hamza et
al., 2009). Comparison the GPS receiver
implementations using NI LabVIEW and MS Visual
Studio C++ platforms is provided where it is shown that
due to NI LabVIEW platform’s inherent optimization
capabilities and embedded multithreading, the same
algorithm implementation provides better performance
and the overhead is insignificant while embedding the
C++ dll into the LabVIEW environment.

Acknowledgments

The authors would like to express their sincere gratitude
to Texas Instruments for providing the TMS320C6713
DSP Starter Kit (DSK) which made the design and
implementation of this work possible.

References

Agarwal N. et al (2002), Algorithms for GPS operation

indoors and downtown, GPS Solutions., Springler-
Verlag Heidelberg, Vol. 6, No. 3, pp. 149-160.

Akopian D. (2005), Fast FFT based GPS satellite

acquisition methods, Proceedings of IEE, Vol. 152,
No. 4, pp. 277-286, 2005. Initial version presented at
ION-GPS-2001 Conference, Sep. 11-14, 2001, Salt
Lake City, UT.

Akopian D., A. Soghoyan, S. Chayapathi, GVS Raju

(2011), A Flexible LabVIEW-based GNSS Receiver
Development and Testing Platform, ION-ITM-2011
Conference, Jan. 24-26, 2011, San Diego, CA, pp.
1270-1280

Akos D. M., P. Normark, A. Hansson, A. Rosenlind, C.

Stahlberg, and F. Svensson (2001), Global
Positioning System Software Receiver (gpSrx)
Implementation in Low Cost/Power Programmable
Processors, Proc. 2001 ION GPS Conf., Sept. 2001,
Salt Lake City, UT, pp. 2851-2858.

Akos D. (2003), The role of Global Navigation Satellite

System (GNSS) software radios in embedded
systems, GPS Solutions, 2003, Springler-Verlag,
Vol. 7, No. 1: pp.1-4.

Almanac information. http://www.navcen.uscg.gov/

(Accessed May 7, 2012)

Benveniste R., B. Sirmacek, S. Unsalan (2010), A quick

start to the Texas Instruments TMS 320C6713 DSK

Borre K., D. M. Akos, N. Bertelsen, P. Rinder, S.H.

Jensen (2006), A Software-Defined GPS and
Galileo Receiver: A Single-Frequency Approach.
Birkhauser Boston.

Cetin E., I. Kale, R. Morling (2007), Analysis and

compensation of RF impairments for next
generation multimode GNSS receivers, Proceedings
of the IEEE International Symposium on Circuits
and Systems IEEE, May 2007, New Orleans, LA, pp.
1729-1732.

Chassaing R., D. Reay (2008), Digital Signal

Processing and Applications with the
TMS320C6713 and TMS320C6416 DSK, John
Wiley & Sons, Inc., Hoboken, New Jersey.

Chayapathy S.N., A.Kumar, P.Kashyap, D.Akopian, A.

Samant (2009), A SUPL-based A-GPS Simulator
Support for Indoor Positioning, Proc. of the 22nd
Int. Technical Meeting of The Satellite Division of

http://www.navcen.uscg.gov/

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

143

the Institute of Navigation (ION GNSS), Savannah,
GE, Sept. 22-25, 2009, pp. 503-515.

Code Composer Studio Development Tools v3.3 Getting

Started
Guide http://www.ti.com/lit/ug/spru509h/spru509h.p
df (Accessed May 6, 2012)

Developing an OFDM Transmitter and Receiver

System Using LabWindows/CVI and
PXI http://sine.ni.com/cs/app/doc/p/id/cs-12714
(Accessed May 7, 2012).

Ephemeris

information. http://cddis.gsfc.nasa.gov/gnss_datasu
m.html#brdc (Accessed May 7, 2012).

Fastrax GPS receivers and SDKs, http://fastraxgps.com/

(Accessed May 7, 2012).

Girau G., A. Tomatis, F. Dovis, P. Mulassano (2007),

Efficient Software Defined Radio Implementations
of GNSS Receivers, Circuits and Systems, ISCAS
2007, IEEE International Symposium, May 2007,
New Orleans, LA, pp.1733 - 1736.

GPS Multiple-Satellite Signal

Generation, http://www.ni.com/pdf/products/us/cat_
gpstollkit.pdf, (Accessed: Oct. 1, 2012)

GPS Networking, http://gpsnetworking.com/standard-

line-amplifiers.asp (Accessed May 7, 2012)

GPS Receiver Testing, http://www.ni.com/white-

paper/7189/en (Accessed Sept. 25, 2012)

Hamza G. G., A. A. Zekry, M. N. Moustafa

(2009), Implementation of a Complete GPS
Receiver on the C6713 DSP through Simulink
Receiver, Journal of Global Positioning Systems,
Vol.8, No.1 : 76-86

Heinrichs G., M. Restle, C. Dreischer, T. Pany (2007),

NavX®- NSR – A Novel Galileo/GPS Navigation
Software Receiver, ION GNSS International
Technical Meeting of the Satellite Division, Fort
Worth, TX, Sept. 25-28, 2007, pp. 1329-1334.

Internet Protocol Suite,
http://wiki.ask.com/Internet_protocol_suite (Accessed:

Sept. 25, 2012)

Kaplan E.D. (1996), Understanding GPS: Principles

and Applications, Boston: Artech House.

Kashyap P., A. Samant, P. Sagiraju, D. Akopian (2009),

An A-GPS Support for GPS simulators for

Embedded Mobile Positioning, Proc. of SPIE
Multimedia on Mobile Devices, Electronic Imaging,
Jan. 18-22, 2009.

 LabVIEW, GPS Simulator, RF Signal analyzers and

generators from National
Instruments, http://www.ni.com/ (Accessed May 7,
2012)

Ma C., G. Jee, G. MacGougan, G. Lachapelle, S.

Bloebaum, G. Cox, L. Garin, J. Shewfelt (2001),
GPS Signal Degradation Modeling, Proceedings of
the 14th International Technical Meeting of the
Satellite Division of The Institute of Navigation
(ION GPS 2001), Salt Lake City, UT, Sept. 2001, pp.
882-893.

Matlab from Mathworks

at www.mathworks.com. (Accessed May 5,2012)

Misra P., P. Enge (2001), Global Positioning System,

Signals, Measurements, and Performance. Ganga-
Jamuna Press, Lincoln, MA.

Narisetty J., A. Soghoyan, M. Sundaramurthy, D.

Akopian (2012), SUPL support for mobile devices,
Multimedia on Mobile Devices 2012, Proceedings
Vol. 8304, Feb. 2012

NI LabVIEW

DSP http://www.ni.com/pdf/manuals/371581c.pdf
(Accessed May 7, 2012)

NI LabVIEW Test Integration

Toolkit, http://www.ni.com/pdf/manuals/323452b.pd
f (Accessed May 7, 2012)

NI LabWindows/CVI , http://www.ni.com/lwcvi/

(Accessed Jan. 13, 2011)

Open Mobile Alliance. UserPlane Location Protocol

v1.0, Open Mobile Alliance_, OMA-TS-SUPL-
V1_0, 2007.

Open source GPS software radio - GPS-SDR,

multithreaded enabled C++
application, http://www.ctae.org/sdr/doc/html/index.
html (Accessed May 7, 2012).

OSS Nokalva, www.oss.com (Access: May 20, 2012)

Prototyping Algorithms for Next-Generation Radio

Astronomy Receivers Using PXI-Based Instruments
and High-Speed
Streaming http://sine.ni.com/cs/app/doc/p/id/cs-
12972 (Accessed May 7, 2012)

http://www.ti.com/lit/ug/spru509h/spru509h.pdf
http://www.ti.com/lit/ug/spru509h/spru509h.pdf
http://sine.ni.com/cs/app/doc/p/id/cs-12714
http://cddis.gsfc.nasa.gov/gnss_datasum.html#brdc
http://cddis.gsfc.nasa.gov/gnss_datasum.html#brdc
http://fastraxgps.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4252534
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4252534
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4252534
http://www.ni.com/pdf/products/us/cat_gpstollkit.pdf
http://www.ni.com/pdf/products/us/cat_gpstollkit.pdf
http://gpsnetworking.com/standard-line-amplifiers.asp
http://gpsnetworking.com/standard-line-amplifiers.asp
http://www.ni.com/white-paper/7189/en%20(Accessed
http://www.ni.com/white-paper/7189/en%20(Accessed
http://wiki.ask.com/Internet_protocol_suite
http://www.ni.com/
http://www.mathworks.com/
http://spie.org/app/profiles/viewer.aspx?profile=JCKGVS
http://spie.org/app/profiles/viewer.aspx?profile=THBJMX
http://spie.org/app/profiles/viewer.aspx?profile=THBJMX
http://www.ni.com/pdf/manuals/371581c.pdf
http://www.ni.com/pdf/manuals/323452b.pdf
http://www.ni.com/pdf/manuals/323452b.pdf
http://www.ni.com/lwcvi/
http://www.ctae.org/sdr/doc/html/index.html
http://www.ctae.org/sdr/doc/html/index.html
http://www.oss.com/
http://sine.ni.com/cs/app/doc/p/id/cs-12972
http://sine.ni.com/cs/app/doc/p/id/cs-12972

Arpine Soghoyan, David Akopian: A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP
Peripherals: Case study with C6713 DSK

144

Sagiraju P. K., P. Kashyap, D. Akopian (2008), Block
correlator for tracking GPS/GNSS Signals, ION-
GNSS-2008 Conference, Sep. 16-19, 2008,
Savannah, GE, pp. 229-235.

Soghoyan A., G. Huang, J. Narisetty, D. Akopian (2011)

A LabVIEW-Based Assisted GPS Receiver
Development, Simulation and Testing Platform,
Proceedings of the 24th International Technical
Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2011), Sept. 20 - 23,
2011,Oregon Convention Center, Portland, pp. 1982-
1997

Texas Instruments, www.ti.com, TMS320C6713

DSP, http://www.ti.com/tool/tmdsdsk6713 ,
(Accessed Oct. 23, 2011)

Third Generation Partnership Project 3GPP TS

44.031; Technical Specification Group
GSM/EDGE Radio Access Network; Location
Services (LCS); Mobile Station (MS) – Serving
Mobile Location Centre (SMLC) Radio Resource
LCS Protocol (RRLP), 2010.

TMS320C6000 Code Composer Studio

Tutorial, http://www.ti.com/lit/ug/spru301c/spru301
c.pdf, (Accessed May 7, 2012)

T-REC-X.691 -2008 ASN.1 Encoding Rules:

Specification of Packed Encoding Rules (PER)
at http://www.itu.int/ITU-T (Accessed Sept. 25,
2012).

WAAS Test
Team, http://www.nstb.tc.faa.gov/DisplayNSTBData
Download.htm (Accessed, Sept. 25, 2012)

Winternitz L., M. Moreau, G. J. Boegner Jr. and S.

Sirotzky (2004), Navigator GPS Receiver for Fast
Acquisition and Weak Signal Space Applications,
ION GNSS 2004, Sep 21-24, 2004, Long Beach, CA,
pp. 1013-1026.

UniGone ASN.1

Solutions, http://www.unigone.com/en/solutions/asn
1 (Access: May 20, 2012)

Wireless E911 location accuracy requirements: FCC

mandate for Docket 94-
102. http://www.fcc.gov/e911. (Accessed May 7,
2012).

Zhao Y. (2002), Standardization of Mobile Phone

Positioning for 3G Systems, IEEE Communications
Magazine, July 2002, pp. 109-116.

Biography

Arpine Soghoyan - received her B.Sc./M.Sc. degrees in
Radiophysics and Electronics department of the Yerevan
State University, and M.Sc. in Computer and
Information Science at the American University of
Armenia. Currently she is a Ph.D. student in the
department of Electrical and Computer Engineering at
the University of Texas at San Antonio. Her research
focuses on software defined radio, fast prototyping and
testing of hybrid hardware/software GPS receivers.

http://www.ti.com/
http://www.ti.com/tool/tmdsdsk6713
http://www.ti.com/lit/ug/spru301c/spru301c.pdf
http://www.ti.com/lit/ug/spru301c/spru301c.pdf
http://www.nstb.tc.faa.gov/DisplayNSTBDataDownload.htm
http://www.nstb.tc.faa.gov/DisplayNSTBDataDownload.htm
http://www.unigone.com/en/solutions/asn1
http://www.unigone.com/en/solutions/asn1
http://www.fcc.gov/e911

	1. Introduction
	2. Software Defined Radio Concept For GPS Receiver Development
	3. NI LabVIEW-Based Testbed for GPS SDR Development
	3.1 Front-End GPS signal simulator and transmitter

	4. GPS Receiver Signal Processing
	4.1 Acquisition
	4.3 Advanced correlators

	5. DSP as a Hardware Accelerator
	5.1 LabVIEW DSP module
	5.2 LabVIEW DSP test integration toolkit

	6. LabVIEW GPS/GNSS Receiver Testing with A-GPS Support
	7. Conclusion

