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QR Implementation of GNSS Centralized Approa
hesA. LannesCNRS/LSS/1 (Fran
e)S. GrattonCNES/OMP/1 (Fran
e)Abstra
t. When pro
essing times series of global po-sitioning data, one is led to introdu
e `lo
al variables,'whi
h depend on the su

essive epo
hs of the time series,and a `global variable' whi
h remains the same all overthese epo
hs with however possible state transitions fromtime to time. For example, the latter o

ur when somesatellites appear or disappear. In the period de�ned bytwo su

essive transitions, the problem to be solved inthe least-square sense is governed by a linear equationin whi
h the key matrix has an angular blo
k stru
ture.This stru
ture is well suited to re
ursive QR fa
toriza-tion. The 
orresponding te
hniques prove to be very ef-�
ient for GNSS data pro
essing and quality 
ontrol inreal-time kinemati
s. The main obje
tive of this paper isto show how the QR implementation of GNSS 
entralizedapproa
hes 
ombines the advantages of all the methodsdeveloped hitherto in this �eld. The study is 
ondu
tedby 
onsidering the simple 
ase of 
ontinuous observationswith a lo
al-s
ale single baseline. The extension to net-works is simply outlined.Keywords. GNSS, DGPS, RTK. PPP. DIA. RAIM.LLL. Undi�erential 
entralized data, redu
ed di�eren
e.Re
ursive Least Square (RLS). Quality 
ontrol. Integerambiguity resolution.1 Introdu
tionIn the traditional approa
h to di�erential GNSS, the satel-lite error terms are eliminated by forming the so-
alledsingle di�eren
es (SD). One then gets rid of the re
eivererror terms by 
omputing, for ea
h re
eiver to be 
on-sidered, the 
orresponding double di�eren
es (DD): thedis
repan
ies between the single di�eren
es (SD) and oneof them taken as referen
e. Note that a similar situ-ation arises in pre
ise point positioning (PPP) with asingle re
eiver. To handle the SD's in a homogeneous1This work was also supported by the CERFACS (Fran
e): theEuropean Centre for Resear
h and Advan
ed Training in S
ienti�
Computation.

manner, one may equally well 
onsider the dis
repan-
ies between the SD's and their mean value. By adopt-ing the terminology introdu
ed by Shi and Han (1992),one may then speak of `
entralized di�eren
es' (CD). At�rst sight, the ambiguities to be raised are then rationalnumbers (whi
h are not ne
essarily integers). The GNSS
ommunity therefore 
onsidered that this idea 
ould notbe implemented easily. Fifteen years later, this prin
i-ple was reintrodu
ed in an independent manner (Lannes2007a). In the 
orresponding approa
h, whi
h referredto the same 
on
ept, but with another terminology, thatof `redu
ed di�eren
e' (RD), the di�
ulty related to ra-tional ambiguities was over
ome. The 
onne
tion withthe 
entralized undi�erential method was then 
lari�ed(Lannes 2007b, 2008). In parti
ular, it was shown thatat any stage of the data assimilation pro
edure, it waspossible to pass from the RD mode to the DD mode,and vi
e-versa. Shortly, the RD mode is well suited toquality 
ontrol (see Se
ts. 6 in Lannes 2007b and 2008),while solving the rational-ambiguity problem amounts tosolving a nearest-latti
e-point problem of DD type (seeSe
t. 5.2 in Lannes 2007b).When pro
essing times series of global positioning data,one is led to introdu
e `lo
al variables' ui whi
h depend onthe su

essive epo
hs ti of the time series to be pro
essed,and a `global variable' v whi
h remains the same all overthese epo
hs with however possible state transitions fromtime to time. For example, the latter o

ur when somere
eiver-satellite signals appear or disappear. In the pe-riod de�ned by two su

essive transitions, the problem tobe solved in the least-square (LS) sense is governed by asystem of linear equations of the form
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A1u1 +B1v = b1
A2u2 +B2v = b2...
Aiui +Biv = bi

(1)The de�nition of the variables ui and v depends on theGNSS system under 
onsideration. The 
omponents of uiand v are real numbers, some 
omponents of v being inte-gers (lying in Z): the integer ambiguities of the problem.
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an be displayed as follows:
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(2)As spe
i�ed in Se
t. 6.3 of Björ
k 1996 (see also Goluband van Loan 1989, Bierman 1977), the angular blo
kstru
ture of matrix [A B] is well suited to re
ursive QR fa
-torization. When dealing with large-s
ale problems, nu-meri
al a

ura
y 
an thereby be improved.More interestingly, the 
orresponding te
hniques proveto be very e�
ient for GNSS data pro
essing and quality
ontrol; see, e.g., Tiberius (1998), Loehnert et al (2000),Chang and Guo (2005). As 
lari�ed in this paper, this isparti
ularly the 
ase for the GNSS 
entralized approa
hes,even when dealing with small-s
ale systems. In parti
u-lar, in the quality-
ontrol pro
edures, the identi�
ationof biases is then made easier (see Se
ts. 4.3 and 3.3).To introdu
e the reader to the QR implementation ofthese approa
hes, we now 
on
entrate on the simple 
aseof 
ontinuous observations in RTK mode with a lo
al-s
ale single baseline (see, e.g., Table 1 in Feng and Li 2008).This problem 
an of 
ourse be dealt with as a spe
ial 
aseof multiple-baseline networks with possibly missing data.In this paper, we will not pro
eed that way. Indeed, the
orresponding theoreti
al framework would then maskthe main guidelines of our 
ontribution.The RD approa
h presented in Lannes 2007ab addressedthis parti
ular GNSS system. The 
orresponding data-assimilation pro
edure was based on re
ursive least-square(RLS) �ltering. In parti
ular, the normal equation asso-
iated with Eq. (2) was solved with the aid of 
lassi
alRLS te
hniques. The QR implementation of this pro
e-dure therefore remained to be done.As revealed by the 
ontents of the present paper, this im-plementation led us to 
larify some important points. Forexample, the RD 
on
ept was revisited and generalized.The quality-
ontrol pro
edure was thereby strongly sim-pli�ed. At last but not the least, the advantages of theRD and DD approa
hes were 
onjugated in a straight-forward manner. As a result, the extension to generalnetworks presented in Lannes 2008 is to be revisited a
-
ordingly. This will be done in a forth
oming paper.1.1 Observational equationsThe parti
ular GNSS system examined in this paper isgoverned by the following observational equations (see,e.g., Se
t. 14 in Strang and Borre 1997). For ea
h fre-quen
y fν , for ea
h re
eiver-satellite pair (r, s), and atea
h epo
h t, the 
arrier-phase and 
ode relations are re-

spe
tively of the form
φν,t(r, s) = ρt(r, s) + c[δtν,t(r) − δtν,t(s)]

+ λν [ϕν,0(r) − ϕν,0(s)] + λνNν(r, s) + εν,t(r, s)
(3)

pν,t(r, s) = ρt(r, s) + c[dtν,t(r) − dtν,t(s)] + ǫν,t(r, s) (4)In these equations, whi
h are expressed in length units,
ρt(r, s) is the re
eiver-satellite range: the distan
e be-tween satellite s (at the time t − τ where the signal isemitted) and re
eiver r (at the time t of its re
eption).The λν 's denote the wavelengths of the 
arrier waves; theintegers Nν(r, s) are the integer 
arrier-phase ambigui-ties. The instrumental delays and 
lo
k errors that for agiven (ν, t) depend only on r and s are lumped togetherin the re
eiver and satellite error terms δtν,t(r), δtν,t(s)for the phase, and dtν,t(r), dtν,t(s) for the 
ode (c is thespeed of light); ϕν,0(r) and ϕν,0(s) are the initial phases(expressed in 
y
les) in re
eiver r and satellite s, respe
-tively. The phase and 
ode errors εν,t(r, s) and ǫν,t(r, s)in
lude both noise and residual model errors. Here, for
larity, the ionospheri
 and tropospheri
 delays are ig-nored (see Se
t. 1.2 with a lo
al-s
ale system).For 
larity, we now restri
t ourselves to the single-frequen
y
ase. Equations (3) and (4) then redu
e to
φt(r, s) = ρt(r, s) + c[δtt(r) − δtt(s)]

+ λ[ϕ0(r) − ϕ0(s)] + λN(r, s) + εt(r, s)
(5)

pt(r, s) = ρt(r, s) + c[dtt(r) − dtt(s)] + ǫt(r, s) (6)It may be 
onvenient to 
onsider that a fun
tion ϑ(r, s),su
h as ρt(r, s) for example, takes its values on a re
tan-gular grid. When the system in
ludes two re
eivers and
n satellites (as it is the 
ase here), this grid in
ludes twolines and n 
olumns; the values ϑ(r, s) then de�ne a ve
-tor ϑ of the `observational spa
e' R

2n. These values arethe 
omponents of ϑ in the standard basis of R
2n.The varian
e-
ovarian
e matrix of the data ve
tor ψ = φ(for the phase) or ψ = p (for the 
ode) is denoted by Vψ.Let [ϑ] now be the 
olumn matrix whose entries are the
omponents of ϑ. The size ‖ϑ‖ψ of a ve
tor ϑ of type ψ(for example, that of an observational residual of type ψ)is de�ned via the relation

‖ϑ‖2
ψ := [ϑ]TV −1

ψ [ϑ] (7)1.2 SD equationsLet r1 be the referen
e re
eiver, and r2 be that of theuser. Denote by s1, s2, . . . , sn the satellites involved inthe GNSS devi
e at epo
h t. A quantity su
h as
ϑ(j) := ϑ(r2 , sj) − ϑ(r1 , sj) (8)is then referred to as a single di�eren
e (SD) in ϑ. (Inthis paper, a notation su
h as a := b means `a is equalto b by de�nition.')
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hes 135Adopting the notation de�ned in Eq. (8), we then obtainfrom Eq. (5) the SD phase equations
φ

(j)
t = ρ

(j)
t + λv(j) + αt + ε

(j)
t (j = 1, . . . , n) (9)where

v(j) := N (j) −N (1) (10)and
αt := c[δtt(r2) − δtt(r1)]

+ λ[ϕ0(r2) − ϕ0(r1)] + λN (1)
(11)A

ording to its de�nition, αt is an unknown re
eiverparameter shifted by an unknown number of wavelengths.The n− 1 integers

v(2), v(3), . . . , v(n)are the DD ambiguities of the problem; here, the latterare de�ned with regard to the �rst satellite of the list ofvisible satellites at the initialization epo
h: v(1) = 0. Thispointed out, in the present approa
h, no `usual doubledi�eren
e' is 
omputed: the SD data are dealt with in ahomogeneous manner (see Se
t. 1.4).The SD 
ode equations are obtained from Eq. (6) in asimilar manner:
p
(j)
t = ρ

(j)
t + at + ǫ

(j)
t (j = 1, . . . , n) (12)where

at := c[dtt(r2) − dtt(r1)] (13)1.3 Linearized SD equationsThe position variable at epo
h t, ξt, appears via the lin-earization of the single di�eren
es ρ(j)
t with respe
t tothe position variable ξ2;t of the user re
eiver r2. Here, weimpli
itly refer to the relation ξ2;t = ξ̃2;t + ξt. As

ρ
(j)
t = ρt(r2, sj) − ρt(r1, sj)the linear expansion of ρ(j)

t is of the form
ρ
(j)
t = ρ̃

(j)
t +

(

κ
(j)
t · ξt

) (14)where κ(j)
t is the unitary ve
tor that 
hara
terizes thedire
tion sj → r2 of the signal re
eived at epo
h t. Thegeometry-free SD equations (9) and (12) then yield thelinearized SD equations

(

κ
(j)
t · ξt

)

+ λv(j) + αt + ε
(j)
t = φ̃

(j)
t (15)

(

κ
(j)
t · ξt

)

+ at + ǫ
(j)
t = p̃

(j)
t (16)where (for j = 1, . . . , n)

φ̃
(j)
t := φ

(j)
t − ρ̃

(j)
t (17)

p̃
(j)
t := p

(j)
t − ρ̃

(j)
t (18)

We now show how to express these equations in a more
on
ise form. Denoting by {ej}nj=1 the standard basisof R
n, let us 
onsider the ve
tor

ϑ :=

n
∑

j=1

ϑ(j)ej (19)where the ϑ(j) 's are the SD's de�ned in Eq. (8); R
n isthen regarded as the `SD spa
e.' Throughout this paper,to avoid any 
onfusion, a fun
tion su
h as ϑ(r, s) is neverdenoted by the isolated symbol ϑ.Let Γt be the operator de�ned by the relations

(Γtξt)
(j) :=

(

κ
(j)
t · ξt

)

(j = 1, . . . , n) (20)By 
onstru
tion, the elements of the jth line of the matrixof Γt are the 
omponents of κ(j)
t , i.e., the dire
tion 
osinesof κ(j)

t ; this matrix in
ludes n lines. Let us now denoteby ζ be the ve
tor of R
n whose 
omponents are all equalto unity. In terms of ve
tors, the linearized SD equa-tions (15) and (16) 
an then be written as follows:

Γtξt + λv + ζαt + εt = φ̃t (21)
Γtξt + ζat + ǫt = p̃t (22)Note that ξt, αt and at are lo
al variables, whereas v is aglobal variable.Let [ϑ] now be the 
olumn matrix whose entries are the
omponents of ϑ. The size ‖ϑ‖ψ of a ve
tor ϑ of type ψ(for example, that of an observational residual of type ψ)is de�ned via the relation
‖ϑ‖2

ψ := [ϑ]TV −1
ψ [ϑ] (23)where Vψ is varian
e-
ovarian
e matrix of ψ:

Vψ = SVψST (24)Here, S is the matrix of the SD operator (see Eq. (8))
S[ϑ] := [ϑ] (25)Let us now introdu
e the Cholesky fa
torization
V −1
ψ = UT

ψ Uψ (26)where Uψ is an invertible upper-triangular matrix. FromEq. (23), we then have
‖ϑ‖2

ψ = [ϑ]TUT
ψ Uψ[ϑ] = [Uψϑ]T[Uψϑ]i.e.,

‖ϑ‖2
ψ = [ϑψ ]T[ϑψ] (27)where

[ϑψ ] := Uψ[ϑ] (28)A

ording to these equations, the size of a ve
tor ϑ oftype ψ is equal to the size of ϑψ in R
n:

‖ϑ‖2
ψ = ‖ϑψ‖2 (29)As 
lari�ed in Se
t. 1.4, this tri
k proves to play a keyrole in the approa
h presented in this paper.



136 Journal of Global Positioning Systems1.4 Statement of the problemLet t1 be the initialization epo
h of the `
urrent run'
[t1, . . . , ti]. A

ording to Eqs. (21) and (22), the problemis to minimize the obje
tive fun
tional
f(ξ1, . . . , ξi; v;α1, . . . , αi; a1, . . . , ai)

:=
∑i

ι=1 ‖φ̃ι − (Γιξι + λv) − ζαι‖2
φι

+ ‖p̃ι − Γιξι − ζaι‖2
pι

(30)where ξι ≡ ξtι , and likewise for αι, aι, φ̃ι, p̃ι and Γι. Inour approa
h, this is done in two steps. The �rst stepis to minimize f in αι and aι for ι = 1, . . . , i. As 
lar-i�ed below, this operation 
orresponds to the notion of`redu
tion.'1.4.1 Redu
ed equationsLet us �rst 
on
entrate on the phase terms. For 
larity,let us then set ϑ := φ̃ι−(Γιξι+λv). The optimal estimateof αι is then the real number α◦ for whi
h the minimumof ‖ϑ− ζα‖φ in α is attained. From Eq. (29), we have
‖ϑ− ζα‖2

φ = ‖ϑφ − ζφα‖2where φ stands for φι. As a result, α◦ is the solution ofthe normal equation
[ζφ]

T[ζφ]α = [ζφ]
T[ϑφ]i.e.,

α◦ =
[ζφ]

T[ϑφ]

[ζφ]T[ζφ]It follows that
ϑφ − ζφα◦ = Rφϑwhere (here, for ψ = φ ≡ φι)
Rψϑ := ϑψ − [ζψ ]T[ϑψ]

[ζψ ]T[ζψ ]
ζψ (31)Consequently (see Eq. (30)):

min
αι∈R

‖φ̃ι−(Γιξι+λv)−ζαι‖2
φι = ‖Rφι [φ̃ι−(Γιξι+λv)]‖2Likewise, for the 
ode terms,

min
aι∈R

‖p̃ι − Γιξι − ζaι‖2
pι = ‖Rpι(p̃ι − Γιξι)‖2We are thus led to minimize the `redu
ed fun
tional'

fr(ξ1, . . . , ξi; v)

:=
∑i

ι=1 ‖Rφι [φ̃ι − (Γιξι + λv)]‖2

+ ‖Rpι(Γιξι − p̃ι)‖2

(32)The `redu
ed equations' to be solved in the usual LS sense
an therefore be displayed as follows:
Rφι(Γιξι + λv) = Rφι φ̃ι (33)
RpιΓιξι = Rpι p̃ι (34)

1.4.2 Redu
tion operatorLet us 
on
entrate on the `redu
tion operator' (31). For
larity, let us set
ϑr;ψ := Rψϑ (35)To give a more 
on
rete idea of the a
tion of this oper-ator, let us now 
onsider the typi
al situation where thevarian
e-
ovarian
e matrix of the observational data oftype ψ is of the form (see Liu 2002)
Vψ = diag(η(r, s)σ2

ψ

) (36)Here, σ2
ψ is a `referen
e varian
e;' η(r, s) is a nonnegativeweight fun
tion. The varian
e-
ovarian
e matrix of theSD data is then given by the relation (see Eq. (24))

Vψ = diag(ηjσ2
ψ) ηj := η(r1 , sj) + η(r2 , sj) (37)From Eq. (26), we then have

Uψ = diag(

1
√
ηj σψ

) (38)hen
e, from Eq. (28),
ϑ

(j)
ψ =

1
√
ηj σψ

ϑ(j) ζ
(j)
ψ =

1
√
ηj σψ

ζ(j)As ζ(j) = 1 for all j, we then have
[ζψ ]T[ϑψ ] =

1

σ2
ψ

n
∑

j=1

1

ηj
ϑ(j) [ζψ]T[ζψ ] =

1

σ2
ψ

n
∑

j=1

1

ηjIt then follows from Eqs. (35) and (31) that the 
ompo-nents of ϑr;ψ are given by the formula
ϑ

(j)
r;ψ =

ϑ(j) − ϑ(0)

σψj
σψj :=

√
ηj σψ (39)where

ϑ(0) :=

n
∑

j=1

µjϑ
(j) µj :=

1
ηj

∑n
k=1

1
ηk

(40)Note that σψj is the standard deviation of the single-di�eren
e ψ(j). With regard to the SD weights 1/ηjor 1/σ2
ψj , ϑ(0) is a `bary
entri
 single di�eren
e:'

n
∑

j=1

ϑ(j) − ϑ(0)

σ2
ψj

= 0A

ording to its notation, this virtual single di�eren
eis asso
iated with a virtual satellite s0. The n `virtualdouble di�eren
es' ϑ(j) − ϑ(0) 
an thus be regarded as the`
entralized values' of the ϑ(j) 's (Shi and Han 1992), orequally well, as the `redu
ed values' of the ϑ(j) 's (Lannes2007ab). Indeed, the minimum of
n

∑

j=1

(ϑ(j) − ω)2

σ2
ψj

(ω ∈ R)is obtained for ω = ϑ(0). In other terms, in a 
on
retemanner, the a
tion ofRψ 
onsists in performing this typeof redu
tion.
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hes 1371.5 ContentsAs spe
i�ed in Se
t. 2, the redu
ed equations (33) and (34)lead to a linear system of type (2). The blo
k matri
es Ai,
Bi and bi are then de�ned, and likewise for the lo
al vari-ables u1, u2, . . . , ui and the global variable v. The 
ompo-nents of v are then the �oat ambiguities of the problem.The �oat solution v̂ is re�ned re
ursively, epo
h-by-epo
h,with the aid of the QR method. This method is intro-du
ed in Se
t. 3.1, and fully des
ribed in Se
t. 3.2. The se-le
ted QR implementation is based on `Givens rotations'(see, e.g., Björ
k 1996); the 
orresponding operations 
anthus be stored in memory very easily. This is very usefulfor the variational method presented in Se
t. 3.3. As thelatter is basi
ally involved in the quality-
ontrol pro
e-dures (see Se
t. 4), the e�
ien
y of the DIA method pre-sented in Lannes 2007b is thereby improved. The statetransitions indu
ed by the appearan
e and/or the dis-appearan
e of some satellites are examined in Se
ts. 3.4and 3.5, respe
tively. As spe
i�ed in Se
t. 3.6, the in-verse of the varian
e-
ovarian
e matrix of v̂ is dire
tlyprovided by the QR method. The pro
edure that yieldsthe integer-ambiguity solution v̇ is des
ribed in that se
-tion.This study is illustrated with dual-frequen
y examples(Se
t. 5). Some 
omments on the key points of our 
on-tribution, and its extension to GNSS networks are to befound in Se
t. 6.2 Blo
k matri
es of the globalRD equationThe redu
ed equations (33) and (34) lead to an equationof type (2). We now 
larify this point expli
itly. Theextension to the dual-frequen
y 
ase is straightforward(see Se
t. 5).The lo
al variable ui then redu
es to the position vari-able ξi. The blo
k matrix Ai is then de�ned as follows:
Ai =

[

RφiΓi

RpiΓi

] (41)Note that RψΓi is obtained by applying the redu
tionoperator Rψ to ea
h 
olumn ve
tor of Γi (see Eq. (31)and Se
t. 1.4.2). The 
orresponding data blo
k of Eq. (2)is then
bi =

[

Rφi φ̃i

Rpi p̃i

] (42)Let S̄i := {s1 , s2 , . . . , sn̄i} be the series of satellites in-volved in the observational pro
ess until epo
h ti in
luded.A given satellite may disappear and reappear in the samerun. Su
h a satellite is then regarded as a new satellite. In

other words, whenever this o

urs, a new satellite is addedat the end of this series. The ni satellites of epo
h ti forma subset Si of S̄i: ni ≤ n̄i.To introdu
e the reader to what is essential, we �rst re-stri
t ourselves to the 
ase where no satellite appears ordisappears in the 
urrent run [t1, . . . , ti]: no state transi-tion in this interval. The entries of the global variable vare then the ambiguities v(2), v(3), . . . , v(ni) with ni = n̄i(see Eq. (10)). As 
lari�ed in Se
t. 3.4, it is re
ommendedto 
lass these ambiguities in reverse order. For example,for ni = 7, the global variable v is then expli
itly de�nedas the 
olumn matrix (with 6 entries)
v =















v(7)

v(6)...
v(3)

v(2)















(43)The phase blo
k of Bi is then of the form (see Eq. (33)):
[

Bi
]

φi
= R[ni]

φi





















· · · · · ·
· · · · · λ
· · · · λ ·
· · · λ · ·
· · λ · · ·
· λ · · · ·
λ · · · · ·





















(ni = 7) (44)Here, the dots stand for 0. This matrix in
ludes ni lines(
orresponding to the ni visible satellites of the system),and ni− 1 
olumns (
orresponding to the ni− 1 ambigu-ities of the problem). The notation R[ni]
φi

means that theredu
tion operation is performed on ve
tors of R
ni . Here,as the referen
e satellite s1 of the 
urrent run is visible,the �rst line is nought (see Eqs. (9) and (10)).Note that the 
ode blo
k of Bi is nought: [

Bi
]

pi
= 0.3 QR methodWe �rst introdu
e the reader to the notion of QR fa
tor-ization (Se
t. 3.1). We then show how to solve Eq. (2) ina re
ursive manner (Se
t. 3.2). The 
orresponding varia-tional aspe
ts are presented in Se
t. 3.3. We then spe
ifyhow to handle the ambiguities when some satellites ap-pear and/or disappear (Se
ts. 3.4 and 3.5, respe
tively).Finally, Se
t. 3.6 is devoted to the QR aspe
ts 
on
erningthe integer ambiguity problem.3.1 QR fa
torizationLet us 
onsider the following general LS problem: mini-mize, with the Eu
lidean norm,

‖Ax− y‖2
Rm (A ∈ R

m×n, m ≥ n, rank A = n)
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A y

R z

z′

0

0

QTy

Fig. 1 LS solution via QR fa
tor-ization. The a
tion of QT on Aand y yields the basi
 QR stru
turesket
hed here: the upper-triangularmatrix R and the 
olumn matrix z.The solution of the equation Ax = yin the LS sense is then given by theformula x = R−1z (see Eq. (46)).With regard to numeri
al a

ura
y, the best way to solvethis problem is to use a method based on the QR fa
tor-ization of A (see, e.g., Björ
k 1996):
A = Q

[

R
0

] (45)where R ∈ R
n×n is an upper triangular matrix with pos-itive diagonal terms, and Q ∈ R

m×m is an orthogonalmatrix: QTQ = Im (the identity matrix on R
m). We thushave

‖Ax− y‖2
Rm = ‖QT(Ax − y)‖2

Rm

=

∥

∥

∥

∥

QTQ

[

R
0

]

x− QTy

∥

∥

∥

∥

2

RmSetting QTy = z+ z′ where z ∈ R
n (see Fig. 1), it followsthat

‖Ax− y‖2
Rm = ‖Rx− z‖2

Rn + ‖z′‖2
Rm−n (46)The LS solution is therefore given by the relation

x̂ = R−1z (47)The problem 
an thereby be solved by ba
k substitution.In the 
ase where x is 
on�ned to Z
n, the solution of theproblem is therefore de�ned as follows:

ẋ = argmin
x∈Zn

‖R(x− x̂)‖2
Rn (48)Indeed, Rx− z = R(x− x̂).A

ording to Eq. (45), QR fa
torization 
onsists in �nd-ing an operator QT (and thereby an operator Q) su
hthat QTA has the blo
k stru
ture [R 0]T sket
hed inFig. 1. This operator is de�ned as a produ
t of elemen-tary orthogonal transformations. In the implementationpresented in this paper, the latter are Givens rotations

(see Eqs. (2.3.10) to (2.3.13) in Björ
k 1996). Premul-tipli
ation of A and y by su
h a rotation matrix a�e
tsonly rows k and ℓ of A and d. This matrix is de�ned sothat, for (a2
k + a2

ℓ) 6= 0,
[

c s

−s c

] [

ak
aℓ

]

=

[

a

0

] (49)where
a = (a2

k + a2
ℓ)

1/2 (50)It is easy to 
he
k that the 
osine and sinus values 
 and sare then given by the following formulas
c = ak/a s = aℓ/a (51)Note that m−1 Givens rotations are required for the �rst
olumn of A, m−2 for the se
ond, and so on (see Fig. 1).It is important to point out that that the a
tion of QT
an be stored in memory as the sequen
e of the su

es-sive (
osine, sinus) pairs (c, s) 
hara
terizing the su

es-sive Givens rotations involved in this operation.3.2 Re
ursive QR fa
torizationWe now show how to solve, in the LS sense and re
ur-sively, the equation (2) indu
ed by the redu
ed equations(33) and (34).Let us �rst 
onsider the initialization epo
h: epo
h 1.The problem is then solved in two steps (see Fig. 2). TheGivens rotations of the �rst step are those required for�nding the upper triangular matrix K1. The modi�edversion of B1 thus obtained in
ludes an upper blo
k L1and a lower blo
k L′

1. Likewise, the modi�ed version of b1in
ludes two 
olumn submatri
es: c1 and c′1. The Givensrotations of the se
ond step yield the upper triangularmatrix R1; c′1 then yields (d1 , d
′
1); see Fig. 2. Note that

K1, L1 and c1 are not a�e
ted by these rotations. Theglobal solution is then obtained by ba
k substitution viathe formula v̂ = R−1
1 d1. The lo
al solution 
an then bealso 
omputed by ba
k substitution: û1 = K−1

1 (c1−L1v̂).The �rst step of the next epo
h (epo
h 2) is similar tothat of epo
h 1: one thus obtains the upper triangularmatrix K2. The modi�ed version of B2 then in
ludes anupper blo
k L2 and a lower blo
k L′
2. Likewise, the mod-i�ed version of b2 in
ludes two 
olumn submatri
es: c2and c′2 (see Fig. 2). The Givens rotations of the se
ondstep then operate on (R1 , L

′
2) and (d1 , c

′
2) so as to trans-form L′

2 into a zero blo
k matrix. One thus gets R2 and
(d2 , d

′
2); v̂ is then updated via the relation v̂ = R−1

2 d2.The lo
al solution at epo
h 2 
an then be 
omputed:
û2 = K−1

2 (c2 − L2v̂).In summary, one thus operates, re
ursively, with the keystru
ture shown in Fig. 3: Ki, (Li , L
′
i) and (ci , c

′
i) are
omputed from Ai, Bi and bi, Ri and (di , d

′
i) being then
omputed from (Ri−1 , L

′
i) and (di−1 , c

′
i). We then have

[

Ki Li
· Ri

] [

ûi
v̂

]

=

[

ci
di

] (52)
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K1 L1 c1

R1 , R2

K2 L2

L′
2

A1 B1

A2 B2

b1

b2

c′1

c2

c′2 d′2

d1

d′1

d2

Fig. 2 LS solution via re
ursive QR fa
torization.The prin
iple of the re
ursive QR method is sket
hedhere for the �rst two epo
hs: epo
h 1 with the in-put blo
k matri
es A1 , B1 and the data 
olumn ma-trix b1; epo
h 2 with the input blo
k matri
es A2 , B2and the data 
olumn matrix b2. The initializationpro
ess is performed in two steps: K1 , (L1 , L′

1),
(c1 , c′1) are built in the �rst step (see text for L′

1),whereas R1 , (d1 , d′

1) are built in the se
ond. Theglobal �oat solution is then found by ba
k substitu-tion: v̂ = R−1

1
d
1
. The lo
al solution is then givenby the formula û1 = K−1

1
(c1 − L1v̂). Likewise, at thenext epo
h, one �rst builds K2 , (L2 , L′

2), (c2 , c′2),and then R2, (d2 , d′

2); v̂ is then updated via the re-lation v̂ = R−1

2
d
2
. The lo
al solution at epo
h 2 
anthen be 
omputed: û2 = K−1

2
(c2 − L2v̂).hen
e v̂ = R−1

i di and ûi = K−1
i (ci − Liv̂). The detailedimplementation of this pro
ess must of 
ourse take a
-
ount of the fa
t the 
ode blo
k of Bi is nought.3.3 Variational 
al
ulationWe now answer to the following question: what are thevariations∆ûi and ∆v̂ indu
ed by a variation∆bi of bi (atepo
h ti)? From Eq. (2), these variations are the u-v 
om-ponents at epo
h ti of the LS solution of the equation











A1 B1

A2 B2

· · ·
...

Ai Bi





















∆u1

∆u2...
∆ui











=











0
0...

∆bi











[

∆v
]By 
onstru
tion, the quantities ∆d1, . . . , ∆di−1 indu
edby this equation are nought. The problem is therefore

Ki Li ci

Ri di

Fig. 3 Re
ursive QR triangularstru
ture. A

ording to the prin-
iple of the re
ursive QR methodsket
hed in Fig. 2, the 
al
ulationof Ri and di requires to have keptin memory the upper triangularmatrix Ri−1 and the 
olumn ma-trix di−1 (see text).the same as previously, ∆di being then 
omputed from
∆c′i with ∆di−1 = 0. This is why it is re
ommended tostore in memory the sequen
e of the su

essive pairs (c, s)
hara
terizing the Givens operators involved in the twoQR steps of epo
h ti (see Fig. 2 and Eqs. (51) & (50)).3.4 Handling the ambiguities when somesatellites appearAs shown in Eq. (43), the ambiguities are put in reverseorder. When some satellites appear at epo
h ti, the �rst
olumns of Bi 
an then be pro
essed as the last 
olumnsof Ai (see Fig. 2). To get Ri and di, one then pro
eedsas illustrated in Fig. 4.

K L c

d

R
di

RiFig. 4 Handling additional ambiguities.When satellites appear at epo
h ti, the�rst 
olumns of Bi are pro
essed asthe last 
olumns of Ai. The re
ursiveQR operation then yields the quantities
K, L, c, R and d. To get Ri and di, onethen pro
eeds as illustrated here.3.5 Handling the ambiguities when somesatellites disappearLet us �rst 
onsider the 
ase where the referen
e satelliteof the 
urrent run disappears at epo
h ti. For example,
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orresponding to Eq. (44),the phase blo
k of Bi then be
omes
[

Bi
]

φ
= R[ni]

φ

















· · · · · λ
· · · · λ ·
· · · λ · ·
· · λ · · ·
· λ · · · ·
λ · · · · ·

















(ni = 6) (53)The 
al
ulation of Ri and di is then performed as usually.Indeed, as the ambiguities to be 
onsidered remain thesame, Ri−1 and di−1 must not be modi�ed.Let us now 
onsider the 
ase where, for example, thesatellites s7 and s6 disappear at epo
h ti. The ambiguities
v7 and v6 of Eq. (43) 
an then be removed. The phaseblo
k of Bi is then of the form (see Eq. (44))
[

Bi
]

φ
= R[ni]

φ













· · · ·
· · · λ
· · λ ·
· λ · ·
λ · · ·













(ni = 5) (54)In the 
al
ulation of the upper triangular matrix Ri,
Ri−1 is then simply updated by removing its �rst twolines and �rst two 
olumns. Likewise, in the 
al
ulationof di, the �rst two entries of di−1 are then to be removed.Let us now 
onsider the 
ase where, for example, satel-lites s5 and s3 disappear at epo
h ti, the phase blo
kof Bi is then of the same as that de�ned in Eq. (54);
Ri−1 and di−1 must then be modi�ed as spe
i�ed below.One �rst performs the permutation


















v(7)

v(6)

v(5)

v(4)

v(3)

v(2)



















−→



















v(5)

v(3)

v(7)

v(6)

v(4)

v(2)



















(55)The 
olumns of Ri−1 are then permuted a

ordingly. Asthe matrix thus obtained, R′
i−1, is no longer upper trian-gular, one then performs Givens rotations on R′

i−1 and
di−1 so that R′

i−1 be
omes upper triangular:R′
i−1→R′′

i−1,
di−1 → d′′i−1. To 
omplete the pro
ess, one then removesthe �rst two lines and �rst two 
olumns of R′′

i−1, as wellas the �rst two entries of d′′i−1.3.6 Integer-ambiguity resolutionLet v̂ be the �oat solution at epo
h ti, and n be the num-ber of its 
omponents. In single-frequen
y mode, depend-ing on whether the referen
e satellite of the run [t1, ti] isvisible or not, n is equal to ni − 1 or ni (respe
tively).The ambiguity solution is then de�ned by the relation(see Eq. (48))
v̇ = argmin

v∈Zn

‖Ri(v − v̂)‖2
Rn (56)

A

ording to this formula, v̇ is the point of Z
n 
losestto v̂, the distan
e being that indu
ed by the quadrati
form

q(υ) := ‖Riυ‖2
Rn = υT[RT

i Ri]υ (57)Note that RT
i Ri is the inverse of the varian
e-
ovarian
ematrix of v̂:

RT
i Ri = V −1

v̂ (58)The QR method thus provides the Cholesky fa
tor Ri ofthe matrix of q dire
tly. This is not the 
ase in the usualRLS �ltering te
hniques. Indeed, the latter provide Vv̂whi
h is then to be inverted.The nearest-latti
e-point problem (56) is solved in twosteps (see, e.g., Agrell et al. 2002). One �rst sear
hesa `redu
ed basis' of Z
n in whi
h the matrix of q is asdiagonal as possible. The problem is then solved in thisbasis by using the 
orresponding `redu
ed form' of Ri:

R̄i; the integer-valued solution v̇ is then expressed in theoriginal basis.The �rst step 
orresponds to a de
orrelation pro
ess. Thede
orrelation methods to be implemented must somehowrefer to the prin
iples of the LLL algorithm (an algo-rithm devised by Lenstra, Lenstra and Lovàsz in 1982).Here, as the QR re
ursive pro
ess provides Ri dire
tly,the LLL implementations of Luk and Tra
y (2008) arewell suited to the problem. Denoting by r̄k,ℓ's the ma-trix elements of R̄i, the following 
onditions 
an thus beimposed:(i) r̄k,k > 2|r̄k,ℓ| (for 1 ≤ k < ℓ ≤ n)(ii) r̄2k,k ≥ (ω − 1/4)r̄2k−1,k−1 (for 2 ≤ k ≤ n)with 1/4 < ω < 1. In pra
ti
e, to speed up the se
ond-step pro
edure, ω is set equal to 0.999. Note that Condi-tion (ii) is not ne
essarily imposed in other de
orrelationmethods (see, e.g., Xu 2001).When in the data assimilation pro
ess, v̇ be
omes 
onsis-tent with the model, the ambiguities are said to be �xed.The lo
al variable ûi is then re�ned via a �xed least-squares (FLS) pro
ess, i.e., a pro
ess in whi
h the ambi-guities are �xed at these values. Again, the QR methodis well suited to solving these problems.4 Quality 
ontrolTo prevent that biases on the SD data propagate unde-te
ted into the ambiguity solution and the positioningresults, parti
ular methods have been developed. The bi-ases are �rst `dete
ted,' then `identi�ed,' and �nally theresults are `adapted' 
onsequently (e.g., Teunissen 1990,Hewitson et al. 2004). Note that these DIA methods areto be implemented in all the modes to be 
onsidered: LS,RLS and FLS.The DIA method presented in this se
tion is a simpli�edversion of that presented in Lannes 2007b. Its identi�
a-tion prin
iple is `lo
al,' in the sense that the biases thus
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hes 141identi�ed 
on
ern only the data of the 
urrent epo
h. Inthe present version, the 
orresponding analysis is basedon the results provided by the QR pro
ess at that epo
h.When the ambiguities are not �xed, the adaptation prin-
iple is global: the lo
al position, the 
urrent biases, the
urrent �oat ambiguities and the 
urrent QR triangularstru
ture (sket
hed in Fig. 3) are updated in the globalframe of the QR re
ursive pro
ess, without any approx-imation. This was not 
ompletely the 
ase in Lannes2007b.4.1 Lo
al identi�
ationThe identi�
ation prin
iple is based on the analysis of theresidual at epo
h ti:
wi := bi − (Aiûi +Biv̂) (59)Note that ûi and v̂ depend on bi in a linear manner. Let usnow denote by yi the 
olumn matrix of the SD data 
or-re
ted from the terms due to linearization (see Eqs. (42))
yi :=

[

φ̃i
p̃i

] (60)In what follows, Hi is the operator that yields wi from yi(see Eqs. (42) and (59)):
wi = Hiyi (61)For 
larity, we now omit subs
ript i. Denoting by wpand wφ the 
ode and phase 
omponents of w (respe
-tively), we then have, in single-frequen
y mode,
‖w‖2 := ‖wφ‖2 + ‖wp‖2 (62)where ‖wψ‖2 =

∑n
jψ=1 |wjψ|2 for ψ = p or φ. When ‖w‖2is too large (see Se
t. 4.3), we then sear
h to identify, inthe SD data y, a global bias of the form

z =





∑

jφ∈Ωφ
βjφejφ

∑

jp∈Ωp
βjpejp



 (63)The `outlier sets' Ωφ and Ωp are some `small subsets'of {1, . . . , n}. With regard to the phase (for example) the
orresponding SD model is the following (see Eq. (9)):
ρ(j) + λv(j) + α+ ε(j) =

∣

∣

∣

∣

∣

φ(j) − βjφ if j ∈ Ωφ

φ(j) otherwiseThe problem is to identify Ωφ and Ωp while getting least-squares estimates of the 
orresponding biases βjφ and βjp .The guiding idea is to the 
onsider the 
ontribution ofthese biases to w.As ∆w = H ∆y (see Eq. (61)), we must �rst see whatis the 
ontribution of these biases to y. At this level,the 
orre
tion terms indu
ed by ejφ and ejp are denotedby zjφ and zjp :
y

set

= y − zjψ zjφ :=

[

ejφ
0

]

zjp :=

[

0

ejp

] (64)

A notation su
h as a set

= a+ b means `a is set equal to the
urrent value of a+b.' The variations of w indu
ed by ejφand ejp are therefore 
hara
terized by the quantities fjφand fjp de�ned below:
w

set

=w −Hzjψ fjφ := Hzjφ fjp := Hzjp (65)As a result, the variation of w indu
ed by the global bias zis 
hara
terized by the ve
tor
Mz :=

∑

jφ∈Ωφ

βjφfjφ +
∑

jp∈Ωp

βjpfjp (66)We are then led to solve, in the least-square sense, theequation w−Mz `=' 0, in whi
h the 
olumn ve
tors ofM ,the fjφ 's and fjp 's, have to be thoroughly sele
ted. As
lari�ed in Se
t. 4.3, this operation is performed via a par-ti
ular Gram-S
hmidt orthogonalization pro
ess whi
h isinterrupted as soon as the 
orre
ted data are 
onsistentwith the model.4.2 Global adaptationOn
e the outlier sets Ωφ and Ωp have been identi�ed, themodel is to be updated 
onsequently: Ai is 
ompletedby adding the 
olumns asso
iated with the 
orrespondingbias variables βjφ and βjp . From Eqs. (42) and (64), these
olumn matri
es are respe
tively of the form
[ Rφejφ

0

] [

0
Rpejp

] (67)The global QR re
ursive pro
ess is then updated a

ord-ingly. The position variable, the SD biases and the �oatambiguities are thus re�ned, as well as Ri and di in par-ti
ular (see Fig. 3). When the QR pro
ess is initialized,or when the ambiguities are �xed, the SD biases providedby the adaptation pro
ess 
oin
ide with those provided bythe identi�
ation pro
edure (see Se
t. 4.1 and steps 2.4& 2.5 in Se
t. 4.3). The LS problem to be solved, whi
his then the same, is simply handled in a di�erent manner.4.3 ImplementationIn the pro
edure des
ribed in this se
tion (see the �owdiagram shown in Fig. 6), we denote by Ω the set ofidenti�ed outliers. At the beginning of this pro
edure,
Ω is therefore empty: Ω := Ωφ ∪ Ωp = ∅. For simpli
-ity, we now restri
t ourselves to the limit 
ase de�ned inSe
t. 1.4.2). We then set
|w|max = max

jψ /∈Ω
|wjψ | (68)i.e. here: |w|max = max |wjψ |. Given some probability offalse alarm θ0, we de�ne χ0 as the upper θ0/2 probabilitypoint of the 
entral normal distribution: χ0 := Nθ0/2(0, 1).For example, when θ0 is equal to 0.001, χ0 is of the orderof 3.
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e lo
al testFrom Eqs. (59), (42) and (35), w is a redu
ed quantity.A

ording to Eq. (39), in the absen
e of any bias, |w|maxmust therefore be smaller than χ0. In other terms, if
|w|max < χ0, no outlier is to be sear
hed: one then goesto step 4. Conversely, if |w|max is very large 
omparedto χ0 (say larger than 1000 for example), the QR pro
essis to be reinitialized (see Se
t. 3). In the other 
ases, theDIA pro
edure is initialized by setting r = 1 and Π = ∅;
r is a re
ursive index; the meaning of the auxillary set Π isde�ned in step 2.2 as soon as it begins to be built. At thisstage, in the single-frequen
y 
ase and in FLS mode (forexample), the lo
al redundan
y is given by the formula
m = 2(n− 1) − 3.2. Re
ursive identi�
ation of the outliers2.1. Current set of potential outliersGiven some nonnegative 
onstant κ ≤ 1, form the 
urrentset of potential outliers (see Fig. 5):

Πr :=
{

jψ /∈ Ω : |wjψ| ≥ κ|w|max

}

r r r r

3φ 5φ 3p 5p

|w5φ |

Phase CodeFig. 5 Notion of potential outliers in redu
edmode. The quantities |wjψ| shown here (insingle-frequen
y mode) are the absolute val-ues of the 
omponents of the (updated) resid-ual w (see step 2.7 ). In this illustration,
n = 7, κ = 0.5 and Ω = ∅; four potential out-liers are identi�ed: 3φ, 5φ, 3p and 5p. Here,the phase outlier 5φ is likely to be the domi-nant potential outlier (see step 2.3 ).2.2. For ea
h potential outlier jψ ∈ ΠrPerform the following su

essive operations:a) When jψ /∈ Π, 
ompute (see the 
ontext of Eqs. (64),(65), (61), (42) & (59) and Se
t. 3.3)
fjψ := H ·

∣

∣

∣

∣

∣

zjφ if ψ = φ

zjp if ψ = pThen, set
gjψ := fjψ Π

set

=

{ {jψ} if Π = ∅
Π ∪ {jψ} otherwiseBy 
onstru
tion, Π is the set of potential outliers jψfor whi
h fjψ has already been 
omputed.

b) If r = 1 go to step 2.2
. Otherwise, at this level,
{g◦q}q<r is an orthonormal set. (This set is built, pro-gressively, via step 2.4.) Then, for ea
h integer q < r,
onsider the inner produ
t de�ned as follows:

ςq,jψ := (g◦q · gjψ )

:=
∑

ψ′=φ,p

(g◦q;ψ′ · gjψ ;ψ′)This sum in
ludes two terms. Depending on what
ψ′ refers to (φ or p), g◦

q;ψ′ denotes the phase or 
ode
omponent of g◦
q
, and likewise for gjψ;ψ′ . If ςq,jψ hasnot been 
omputed yet, 
ompute it, store it in mem-ory, and perform the Gram-S
hmidt orthogonalizationoperation

gjψ
set

= gjψ − ςq,jψg
◦
qBy 
onstru
tion, ςq,jψ = (g◦q · fjψ). At the end of allthese operations, gjψ is orthogonal to g◦q for any q < r.
) Consider the proje
tion of w on the one-dimensionalspa
e generated by gjψ , i.e., (hjψ · w)hjψ where

hjψ := gjψ/‖gjψ‖. The norm of this proje
tion is equalto |(hjψ · w)|, the absolute value of the quantity
γjψ := (gjψ · w)/̺jψ ̺jψ := ‖gjψ‖Expli
itly,
(gjψ · w) :=

∑

ψ′=φ,p

(gjψ;ψ′ · wψ′)

‖gjψ‖2 :=
∑

ψ′=φ,p

‖gjψ;ψ′‖22.3. Dominant potential outlierThe identi�ed outlier ̄ψ̄ is de�ned as the dominant po-tential outlier, i.e., the potential outlier for whi
h |γjψ | ismaximal:
̄ψ̄ := arg max

jψ∈Πr

|γjψ |We then set
ωr := ̄ψ̄ Ω

set

=

{ {ωr} if r = 1

Ω ∪ {ωr} if r > 1

γ◦
r

:= γωr
g◦

r
:= gωr

/̺ωrSupers
ript ◦ stands for omega (and outlier). At thislevel, Ω is the 
urrent set of identi�ed outliers:
Ω = {ωq}r

q=1By 
onstru
tion, {g◦
q
}r

q=1 is an orthonormal basis of the
urrent range of M ; ∑r

q=1 γ
◦
q
g◦

q
is the proje
tion of w onthis spa
e. With regard to Eq. (66), we then set

β◦
r

:= βωr
f◦

r
:= fωr
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hes 143QR solutionResidual wEntran
e teston |w|maxReinitializationPotential outliersDominant potential outlierUpdate SD biasesUpdate redundan
yUpdate wInner teston |w|maxGlobal adaptation
Fig. 6 Flow diagram of the DIA pro
edure in redu
edmode. At ea
h step of the identi�
ation pro
ess, the (up-dated) residual w is analyzed on the grounds of Eq. (68):see steps 1, 2.7 and 2.8. This allows the potential outliersto be sele
ted (see Fig. 5). The outliers 
an thus be iden-ti�ed, in a re
ursive manner, via a parti
ular orthogonal-ization Gram-S
hmidt pro
ess. This QR Gram-S
hmidtpro
ess also provides the SD biases, and thereby the 
y-
le slips if any. When the ambiguity are not �xed, thesebiases are slightly re�ned through the global adaptationpro
ess des
ribed in Se
t. 4.2.2.4. Components of g◦

r
in the basis of the f◦

q
'sThese 
omponents are denoted by uq,r:

g◦
r

=
r

∑

q=1

uq,rf
◦
qThey are 
omputed via the QR Gram-S
hmidt formulas(see, e.g., Björ
k 1996)

uq,r =























− 1

̺ωr

∑

q≤q′<r

uq,q′ ςq′,ωr
if q < r

1

̺ωr

if q = rfor 1 ≤ q ≤ r. The uq,r's are the entries of the r
th 
olumnof an upper triangular matrix U.

2.5. Update the SD biasesA

ording to Eq. (66), the SD biases β◦
q are the 
ompo-nents of ∑r

q=1 γ
◦
qg

◦
q in the basis of the f◦

q 's:
r

∑

q=1

γ◦
q
g◦

q
=

r
∑

q=1

β◦
q
f◦

qDenoting by [γ◦] the 
olumn matrix with entries γ◦q (from
q = 1 to r), and likewise for [β◦], we have

[β◦] = U[γ◦]The SD biases are therefore to be updated as follows:
β◦

q

set

=

{

β◦
q

+ uq,rγ
◦
r

if q < r

ur,rγ
◦
r

if q = r

(for 1 ≤ q ≤ r)2.6. Update the lo
al redundan
y
m

set

=m− 1If m = 0 go to step 3.2.7. Update w and |w|max

w
set

=w − γ◦r g
◦
r |w|max

set

= max
jψ /∈Ω

|wjψ |2.8. Inner lo
al testIf |w|max > χ0, update the re
ursive index: r
set

= r + 1.Then, go to step 2.3. Global adaptationUpdate the global QR re
ursive pro
ess by taking a

ountof the identi�ed bias variables (see Se
t. 4.2).4. End5 ExamplesThe QR implementation presented in this paper was vali-dated by pro
essing two GPS-data sets in dual-frequen
ymode (L1-C/A, L2-P). Shortly, these sets 
orrespond tothe following 
ases:
• Stati
 
ase. Stati
 referen
e re
eiver; stati
 userre
eiver; 4907 epo
hs at 1Hz; baseline size of theorder of 250m.
• Kinemati
 
ase. Stati
 referen
e re
eiver; mo-bile user's 
ar re
eiver; 973 epo
hs at 2Hz; maximalbaseline size of the order of 850m.The stati
 
ase was studied to 
he
k our programs. Inboth 
ases, the standard deviations σφ and σp were of theorder of 3 mm and 55 
m, respe
tively (see Eq. (36)).
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ed data were therefore 
entralized di�eren
esof type (39) with ηj = 2 for all j; χ0 was set equal to 3.These data were pro
essed in for
ed RLS mode (with ini-tializations in LS mode).As illustrated in Eq. (43), the �oat ambiguities were putin reverse order. Furthermore, to bene�t from the anal-ysis presented in Se
ts. 3.4 and 3.5, the L1 and L2 ambi-guities were interwoven, as well as the L1 and L2 data intheir phase and 
ode 
olumn submatri
es.The optimal and suboptimal ambiguity solutions, v̇ and ˙̇vrespe
tively, were obtained (at ea
h RLS epo
h) by solv-ing the nearest-latti
e point problem de�ned in Se
t. 3.6.It was thus possible to 
ontrol the value of the `globalambiguity-resolution parameter'
̺1 :=

‖v̇ − v̂‖2
V −1

v̂

‖ ˙̇v − v̂‖2
V −1

v̂

(69)The `lo
al ambiguity-resolution parameter'
̺2 :=

|ẇ|max

| ˙̇w|max

(70)was also 
omputed. Here, ẇ and ˙̇w denote the values ofthe optimal and suboptimal residuals, respe
tively; notethat the bias variables are then in
luded in the lo
al vari-able ui. When
̺1 <∼ 0.5 or ̺2 <∼ 0.4 (validation 
riterion) (71)the ambiguities 
an be regarded as �xed.All the programs were written in C language, in
ludingthe LLL algorithm and the nearest-latti
e point se
tion.The �rst data set of 4907 epo
hs was thus pro
essed, with
κ = 0, in about �ve se
onds on a standard personal 
om-puter. With κ = 1, this CPU time was redu
ed to threese
onds with exa
tly the same results. The se
ond dataset of 973 epo
hs was pro
essed in about two se
onds for
κ = 0, and in about one se
ond for κ = 1.5.1 Stati
 
aseIn this 
ase, due to major data-frame problems, the pro-
ess was reinitialized at the following epo
hs: 1301, 3010and 4689. As spe
i�ed below for the �rst run, the ambi-guities were �xed immediately. The position of the userre
eiver was thus retrieved, up to one or two 
entimeters,ex
ept for the initialization epo
hs of the four runs to be
onsidered: 1, 1301, 3010 and 4689 (see Fig. 7).We now 
on
entrate on the �rst run. Seven or eight satel-lites were then visible: satellites 2, 5, 7, 8, 9, 23, 26 andsometimes 21. The latter appears and disappears (in analternate manner) at the following epo
hs: 365, 878, 883,884, 887, 888, 892, 896, 911, 936, 1004, 1098, 1130.
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Fig. 7 Stati
 
ase (4907 epo
hs). Relative 
oordinates(expressed in meters) of the user and referen
e re
eiversin the Earth-
entred Earth-�xed (ECEF) frame: x, y, z(from the top to the bottom); see text and Fig. 8.
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Fig. 8 Stati
 
ase (4907 epo
hs). Ambiguity resolutionparameters ̺1 (at the top) and ̺2 (at the bottom); see the
ontext of Eqs. (69) to (71). The ambiguities are �xed,ex
ept at the initialization epo
h 1 and at the reinitial-ization epo
hs 1301, 3010 and 4689 (see Fig. 7 and the
orresponding red ti
ks). The other red ti
ks 
orrespondto the epo
hs where a new satellite appears or reappears.At epo
h 1 (in LS mode), a 
ode bias was identi�edon satellite 2 at frequen
y f1; see steps 2.4 and 2.5 inSe
t. 4.3. Its value, 7.02 m, was of 
ourse the same asthat found by the adaptation pro
ess; see Se
t. 4.2 andFig. 6. The data of epo
h 2 were of 
ourse pro
essed inRLS mode. Again, a 
ode bias was identi�ed on satel-lite 2. As expe
ted, its value, 6.70 m, was very 
lose tothat provided by the global adaptation pro
ess: 6.77 m.The ambiguities proved then to be �xed (see Table 1):
̺1 was smaller than 0.16 with ̺2 smaller than 0.65 (seeFig. 8 and Eqs. (69) to (71)). The 
ode bias thus foundwas 5.42 m. Here, |ẇ|max = 3.22 and | ˙̇w|max = 5.07.



Lannes and Gratton: QR Implementation of GNSS Centralized Approa
hes 145Table 1: Stati
 
ase. Dual-frequen
yDD ambiguities. The ambiguities shownhere were �xed at epo
h 2, just after theinitialization epo
h (see text).satellite f1 f2

2 0 0

5 995 532 783 561

7 1 585 927 329 961

8 −1 542 232 −893 259

9 13 115 987 10 232 032

23 6 934 437 4 872 157

26 10 017 404 7 778 866As soon as satellite 21 appeared (at epo
h 365), the 
or-responding ambiguities were immediately �xed:satellite f1 f2

21 −1 632 504 −777 230At epo
h 1093, large phase biases were identi�ed on theL2 and L1 SD phase data of that satellite: 0.143m and
0.107m, respe
tively. As shown by the results obtainedat the next epo
h, these biases announ
ed e�e
tive 
y
leslips. Indeed, at epo
h 1094, one 
y
le slip was identi-�ed on the L2 SD phase of satellite 21, and likewise forthe L1 SD phase of that satellite. More pre
isely, the bi-ases identi�ed by the RLS DIA pro
edure were then thefollowing:

βf2,21φ = 0.227m ≃ λ2

βf1,21φ = 0.195m ≃ λ1

βf1,21p = −4.861m
βf2,21p = 3.974mAt that epo
h, the entran
e value of |w|max was large
ompare to 3 : 28.40. The outliers were then identi�edas spe
i�ed below: Outlier |w|max

(f2 ; 21φ) 29.64

(f1 ; 21φ) 5.49

(f1 ; 21p) 4.49

(f2 ; 21p) 2.30Here, the value in the right-hand side 
olumn is the 
or-responding residual value of |w|max. Corre
ted from the
y
les slips thus identi�ed, the data were then pro
essedwithout any large phase biases until the disappearan
e ofsatellite 21 at epo
h 1098, and then without any di�
ultyuntil the major data-frame problem at epo
h 1301.In the se
ond run, from epo
h 1301 to epo
h 2060 in-
luded, all the previous 8 satellites were visible. The ref-eren
e satellite s1 (satellite 2) then disappeared at epo
h2061. A similar situation o

ured in the fourth run with

nine satellites: the referen
e satellite s1 (satellite 1 in thatrun) disappeared at epo
h 4743. To 
he
k the se
tion ofthe program 
orresponding to the disappearan
e of othersatellites in RLS mode (see Se
t. 3.5), the SD data ofsatellite s2 (then satellite 5) were dis
arded at epo
h 4775.As expe
ted, the 
orresponding results were 
orre
t.From epo
h 4897 to the end of the fourth run, the optimaland suboptimal sets of L1 ambiguities 
oin
ide up to aninteger 
onstant: the unity for all j; the optimal andsuboptimal sets of L2 ambiguities are then identi
al. Asat those epo
hs, the referen
e satellite is not visible, theredu
ed values of v̇ and ˙̇v are the same (see Eq. (53) andEqs. (39) & (40) with ηj = 2 for all j). It then followsthat ẇ = ˙̇w, hen
e ̺2 = 1 (see Fig. 8). The ambiguitiesare however �xed. Indeed ̺1 is then less than 0.04 (seeEq. (71)).5.2 Kinemati
 
aseIn this 
ase, nine to eleven satellites were visible: satel-lites 4, 9, 16, 18, 19, 22, 23, 24, 28, 29 and 32. The ambi-guities were immediately �xed with ̺1 less than 0.15 and
̺2 less than 0.33 (see Table 2 and Figs. 9 & 10; satellite 9was not then visible).Table 2: Kinemati
 
ase. Dual-frequen
y DD ambiguities. The ambigu-ities shown here were �xed at epo
h 2,just after the initialization epo
h (seetext).satellite f1 f2

4 0 0

16 −577 343 −425 713

18 −489 386 −357 110

19 16 040 40 057

22 187 137 178 615

23 −611 408 −448 519

24 −188 663 −122 172

28 −1 651 396 −1 238 734

29 363 726 308 953

32 −19 687 2 051A major data problem appeared at epo
h 222. The pro-
ess was then reinitialized by the RLS DIA pro
edure.Indeed, the entran
e value of |w|max was greater than 106(see step 1 in Se
t. 4.3). The ambiguities were then �xedagain, but only eleven se
onds later (after epo
h 244; seeFig. 10 and Eq. (71)).Just to show the e�
ien
y of our approa
h, 
y
les slipswere imposed at epo
h 960: −1 
y
le in the re
eption ofthe f1-signal 
oming from the referen
e satellite; 2 
y
lesin the re
eption of the f2-signal 
oming from satellite 23;
1 
y
le in the re
eption of the f2-signal 
oming from satel-lite 29.
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Fig. 9 Kinemati
 
ase (973 epo
hs). Relative positions(in meters) of the user and referen
e re
eivers in theECEF frame: x, y, z (from the top to the bottom); seetext and Fig. 10.
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Fig. 10 Kinemati
 situation (973 epo
hs). Ambiguityresolution parameters ̺1 (at the top) and ̺2 (at the bot-tom); see the 
ontext of Eqs. (69) to (71). The ambi-guities are �xed, ex
ept at the initialization epo
h andfrom epo
hs 222 to 244 in
luded (see text and the 
or-responding red ti
ks). The other red ti
ks 
orrespond tothe epo
hs where a new satellite appears or reappears.At that epo
h, the entran
e value of |w|max was then ofthe order of 69. In the RLS DIA pro
edure, the outlierswere then identi�ed as follows:Outlier |w|max

(f2 ; 23φ) 46.57

(f2 ; 29φ) 29.06

(f1, 4φ) 2.66The SD biases �nally obtained by the pro
ess were then

the following:
βf2,23φ = 0.488m ≃ 2λ2

βf2 ;29φ = 0.239m ≃ λ2

βf1 ; 4φ = −0.196m ≃ −λ1Corre
ted from the 
y
les slips thus identi�ed, the datawere pro
essed without any di�
ulty until the end of therun (epo
h 973).6 Con
luding 
ommentsAs 
lari�ed in Se
t. 1.4, the notions of redu
tion and 
en-tralization 
orrespond to the same 
on
ept. The varian
e-
ovarian
e matrix of the redu
ed or 
entralized data isthe identity. For example, in the single-baseline 
ase, thereferen
e formulas are Eqs. (39) and (40). In the 
entral-ized approa
hes, the QR method 
an therefore be applieddire
tly. This not the 
ase in the usual DD approa
h.Indeed, the Cholesky fa
torization of the inverse of thevarian
e-
ovarian
e matrix of the DD data must then beperformed. Moreover, in the 
entralized approa
hes, allthe SD data are handled in the same manner. The 
or-responding numeri
al 
odes are therefore more readablethan those of their DD versions.The QR implementation of GNSS 
entralized approa
hesis also well suited to quality 
ontrol. The sear
h for thepotential outliers is performed by simple inspe
tion ofthe absolute value of the 
omponents of the su

essiveupdated residuals (see Fig. 5 and step 2.7 in Se
t. 4.3).The statisti
al tests are thereby very simple (see steps 1and 2.8 in Se
t. 4.3). Moreover, as the Givens rota-tions of the QR re
ursive pro
esses 
an easily be storedin memory, the variational 
al
ulations involved in theDIA method 
an be performed in a very e�
ient man-ner; see Se
t. 3.3 and step 2.2 in Se
t. 4.3. Furthermore,the QR global adaptation step of the DIA method ni
ely
ompletes the QR Gram-S
hmidt step 2.4 of the lo
alidenti�
ation pro
ess des
ribed in Se
t. 4.3. The SD bi-ases, among whi
h the 
y
les slips (if any), are thus de-termined in two di�erent ways.For simpli
ity, the study presented in this paper was re-stri
ted to the 
ase of RTK observations with a singlebaseline of lo
al s
ale. The extension to multiple-baselinenetworks with possibly missing data follows the guidelinesof the present 
ontribution. The main points to be devel-oped 
on
ern the following topi
s:� Handling the integer ambiguities;� Redu
tion of the undi�erential optimization problem(equivalent of Se
t. 1.4 for the undi�erential data);� QR solution of the redu
ed optimization problem;� Integer-ambiguity resolution;� Identi�able biases;� Related DIA method.
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