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Abstract. When processing times series of global po-
sitioning data, one is led to introduce ‘local variables,’
which depend on the successive epochs of the time series,
and a ‘global variable’ which remains the same all over
these epochs with however possible state transitions from
time to time. For example, the latter occur when some
satellites appear or disappear. In the period defined by
two successive transitions, the problem to be solved in
the least-square sense is governed by a linear equation
in which the key matrix has an angular block structure.
This structure is well suited to recursive QR factoriza-
tion. The corresponding techniques prove to be very ef-
ficient for GNSS data processing and quality control in
real-time kinematics. The main objective of this paper is
to show how the QR implementation of GNSS centralized
approaches combines the advantages of all the methods
developed hitherto in this field. The study is conducted
by considering the simple case of continuous observations
with a local-scale single baseline. The extension to net-
works is simply outlined.
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1 Introduction

In the traditional approach to differential GNSS, the satel-
lite error terms are eliminated by forming the so-called
single differences (SD). One then gets rid of the receiver
error terms by computing, for each receiver to be con-
sidered, the corresponding double differences (DD): the
discrepancies between the single differences (SD) and one
of them taken as reference. Note that a similar situ-
ation arises in precise point positioning (PPP) with a
single receiver. To handle the SD’s in a homogeneous

I This work was also supported by the CERFACS (France): the
European Centre for Research and Advanced Training in Scientific
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manner, one may equally well consider the discrepan-
cies between the SD’s and their mean value. By adopt-
ing the terminology introduced by Shi and Han (1992),
one may then speak of ‘centralized differences’ (CD). At
first sight, the ambiguities to be raised are then rational
numbers (which are not necessarily integers). The GNSS
community therefore considered that this idea could not
be implemented easily. Fifteen years later, this princi-
ple was reintroduced in an independent manner (Lannes
2007a). In the corresponding approach, which referred
to the same concept, but with another terminology, that
of ‘reduced difference’ (RD), the difficulty related to ra-
tional ambiguities was overcome. The connection with
the centralized undifferential method was then clarified
(Lannes 2007b, 2008). In particular, it was shown that
at any stage of the data assimilation procedure, it was
possible to pass from the RD mode to the DD mode,
and vice-versa. Shortly, the RD mode is well suited to
quality control (see Sects. 6 in Lannes 2007b and 2008),
while solving the rational-ambiguity problem amounts to
solving a nearest-lattice-point problem of DD type (see
Sect. 5.2 in Lannes 2007b).

When processing times series of global positioning data,
one is led to introduce ‘local variables’ u; which depend on
the successive epochs ¢; of the time series to be processed,
and a ‘global variable’ v which remains the same all over
these epochs with however possible state transitions from
time to time. For example, the latter occur when some
receiver-satellite signals appear or disappear. In the pe-
riod defined by two successive transitions, the problem to
be solved in the least-square (LS) sense is governed by a
system of linear equations of the form

Ajuyg + Biv = by
Asug + Bov = by
. (1)

Aju; + Biv =b;

The definition of the variables u; and v depends on the
GNSS system under consideration. The components of u;
and v are real numbers, some components of v being inte-
gers (lying in Z): the integer ambiguities of the problem.
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In matrix terms, Eq. (1) can be displayed as follows:

Ay By Uy b1
As By Uo bo
: S (2)
Ai B,L' Uj b'i
v

As specified in Sect. 6.3 of Bjorck 1996 (see also Golub
and van Loan 1989, Bierman 1977), the angular block
structure of matrix [A B] is well suited to recursive QR fac-
torization. When dealing with large-scale problems, nu-
merical accuracy can thereby be improved.

More interestingly, the corresponding techniques prove
to be very efficient for GNSS data processing and quality
control; see, e.g., Tiberius (1998), Loehnert et al (2000),
Chang and Guo (2005). As clarified in this paper, this is
particularly the case for the GNSS centralized approaches,
even when dealing with small-scale systems. In particu-
lar, in the quality-control procedures, the identification
of biases is then made easier (see Sects. 4.3 and 3.3).

To introduce the reader to the QR implementation of
these approaches, we now concentrate on the simple case
of continuous observations in RTK mode with a local-

scale single baseline (see, e.g., Table 1 in Feng and Li 2008).

This problem can of course be dealt with as a special case
of multiple-baseline networks with possibly missing data.
In this paper, we will not proceed that way. Indeed, the
corresponding theoretical framework would then mask
the main guidelines of our contribution.

The RD approach presented in Lannes 2007ab addressed
this particular GNSS system. The corresponding data-
assimilation procedure was based on recursive least-square
(RLS) filtering. In particular, the normal equation asso-
ciated with Eq. (2) was solved with the aid of classical
RLS techniques. The QR implementation of this proce-
dure therefore remained to be done.

As revealed by the contents of the present paper, this im-
plementation led us to clarify some important points. For
example, the RD concept was revisited and generalized.
The quality-control procedure was thereby strongly sim-
plified. At last but not the least, the advantages of the
RD and DD approaches were conjugated in a straight-
forward manner. As a result, the extension to general
networks presented in Lannes 2008 is to be revisited ac-
cordingly. This will be done in a forthcoming paper.

1.1 Observational equations

The particular GNSS system examined in this paper is
governed by the following observational equations (see,
e.g., Sect. 14 in Strang and Borre 1997). For each fre-
quency f,, for each receiver-satellite pair (r,s), and at
each epoch t, the carrier-phase and code relations are re-

spectively of the form

Gu,i(r,s) = pu(r,8) + [0t (1) — tu1(s)] (3)
+ A [pv0(r) = u0(s)] + AuNo(r, 8) + €0e(r, 5)

Pui(r;8) = pe(ry 8) + c[dty o (r) — dbuo(s)] + €1,6(r,5) (4)

In these equations, which are expressed in length units,
pe(r, s) is the receiver-satellite range: the distance be-
tween satellite s (at the time ¢ — 7 where the signal is
emitted) and receiver r (at the time ¢ of its reception).
The A\, ’s denote the wavelengths of the carrier waves; the
integers N, (r,s) are the integer carrier-phase ambigui-
ties. The instrumental delays and clock errors that for a
given (v,t) depend only on r and s are lumped together
in the receiver and satellite error terms 6t +(r), 0ty,.+(s)
for the phase, and dt, (r), dt, ¢(s) for the code (c is the
speed of light); ¢, 0(r) and ¢, 0(s) are the initial phases
(expressed in cycles) in receiver r and satellite s, respec-
tively. The phase and code errors €,,(r, s) and €, (7, s)
include both noise and residual model errors. Here, for
clarity, the ionospheric and tropospheric delays are ig-
nored (see Sect. 1.2 with a local-scale system).

For clarity, we now restrict ourselves to the single-frequency
case. Equations (3) and (4) then reduce to

oi(r,8) = pe(r, ) + c[dte(r) — 5t (s)] 5)
+ Awo(r) — wo(8)] + AN(r, 8) + e¢(r, s)
)

p(r, 8) = pe(r, s) + c[dts(r) — dte(s)] + ex(r, s) (6)

It may be convenient to consider that a function ¥(r, s),
such as p;(r, s) for example, takes its values on a rectan-
gular grid. When the system includes two receivers and
n satellites (as it is the case here), this grid includes two
lines and n columns; the values ¥(r, s) then define a vec-
tor ¥ of the ‘observational space’ R?”. These values are
the components of ¥ in the standard basis of R?".

The variance-covariance matrix of the data vector ¥ = ¢
(for the phase) or ¥ = p (for the code) is denoted by V4.
Let [9] now be the column matrix whose entries are the
components of 9. The size |||, of a vector ¥ of type
(for example, that of an observational residual of type )
is defined via the relation

1913 = [9]"V,, ' [9] (7)

1.2 SD equations

Let r1 be the reference receiver, and ro be that of the
user. Denote by si,S2,...,, the satellites involved in
the GNSS device at epoch t. A quantity such as

09 = I(ra,s;) —I(r1,s;) (8)

is then referred to as a single difference (SD) in 9. (In
this paper, a notation such as a := b means ‘a is equal
to b by definition.”)
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Adopting the notation defined in Eq. (8), we then obtain
from Eq. (5) the SD phase equations

9= oD p @ 4y +69 (j=1,...,n) (9)

where
2@ = N _ N (10)
and

ay = c[0ty(r2) — Oty (r1)]

+ Alpo(r2) — @o(r1)] + ANW ()

According to its definition, «; is an unknown receiver
parameter shifted by an unknown number of wavelengths.
The n — 1 integers

v @ @ )

are the DD ambiguities of the problem; here, the latter
are defined with regard to the first satellite of the list of
visible satellites at the initialization epoch: v(*) = 0. This
pointed out, in the present approach, no ‘usual double
difference’ is computed: the SD data are dealt with in a
homogeneous manner (see Sect. 1.4).

The SD code equations are obtained from Eq. (6) in a
similar manner:
(4) (4) (4)

Dyl =Py tart g (j=1,...,n) (12)

where

ag := c[dty(re) — dt(r1)] (13)

1.3 Linearized SD equations

The position variable at epoch ¢, &, appears via the lin-
earization of the single differences p?) with respect to
the position variable £, of the user receiver ry. Here, we
implicitly refer to the relation £o.s = &o2,¢ + & As

Pl(t]) = pi(ra, s5) = pe(r1, s5)

the linear expansion of p,Ej ) is of the form

i’ =5+ (n" - &) (14)
where ngj) is the unitary vector that characterizes the
direction s; — 7o of the signal received at epoch t. The
geometry-free SD equations (9) and (12) then yield the
linearized SD equations

(5 - &) + M)+ + i) = ¢ (15)
(“Ej) &) +ay + e =) (16)
where (for j=1,...,n)

=0 0 7
3 el 0 5

We now show how to express these equations in a more
concise form. Denoting by {e;}_; the standard basis
of R™, let us consider the vector

9= 9V (19)
j=1

where the ¥)’s are the SD’s defined in Eq. (8); R” is
then regarded as the ‘SD space.” Throughout this paper,
to avoid any confusion, a function such as ¥(r, s) is never
denoted by the isolated symbol 9.

Let T'; be the operator defined by the relations

(o)) = (s - 1) G=1,...,n) (20)

By construction, the elements of the j*" line of the matrix
of I'y are the components of /@,gj ), i.e., the direction cosines
of nij ); this matrix includes n lines. Let us now denote
by ¢ be the vector of R™ whose components are all equal
to unity. In terms of vectors, the linearized SD equa-

tions (15) and (16) can then be written as follows:
Dol + M+ Cap + e = ¢y (21)
et + Car + e = pr (22)
Note that &, a; and a; are local variables, whereas v is a

global variable.

Let [¢] now be the column matrix whose entries are the
components of . The size |9, of a vector 9 of type v
(for example, that of an observational residual of type )
is defined via the relation

19113, = (9" V,; (9] (23)
where V,; is variance-covariance matrix of :

Vy = SVyST (24)
Here, S is the matrix of the SD operator (see Eq. (8))
S[9) = 9] (25)

Let us now introduce the Cholesky factorization
-1 T
vV, =U,U, (26)

where Uy, is an invertible upper-triangular matrix. From
Eq. (23), we then have

1911 = WITUS Uy 9] = (U] [Uy)

9117, = [9] " [0] (27)
where
[D] := Uy V] (28)

According to these equations, the size of a vector 9 of
type % is equal to the size of ¥, in R™:

1911 = 1912 (29)

As clarified in Sect. 1.4, this trick proves to play a key
role in the approach presented in this paper.
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1.4 Statement of the problem

Let t; be the initialization epoch of the ‘current run’
[t1,...,t;]. According to Eqgs. (21) and (22), the problem
is to minimize the objective functional

f(gla'-'7€i;v;ala-"7051';0/17"-70/1')
= Y 16— (D& + M) — Caul?, (30)
+ lp. — 1€ — CaL”;Q)L

where ¢, = &,, and likewise for «,, a,, é,, ppand T',. In
our approach, this is done in two steps. The first step
is to minimize f in «, and a, for « = 1,...,4. As clar-
ified below, this operation corresponds to the notion of
‘reduction.’

1.4.1 Reduced equations

Let us first concentrate on the phase terms. For clarity,
let us then set 9 := ¢, — (T'.€,+Mv). The optimal estimate
of ¢, is then the real number o, for which the minimum
of |9 — Cally in « is attained. From Eq. (29), we have

19 = ¢ally = 195 — Coarl®

where ¢ stands for ¢,.
the normal equation

[l [Cola = [Co] T [9]

As a result, «, is the solution of

ie.,
oo = Lal™D0)
[Col T [Co]
It follows that
19¢ — C¢O¢o = R¢19
where (here, for ¥ = ¢ = ¢,)
(Gl [9y]
Ry =1y — 7 31
W T T Y
Consequently (see Eq. (30)):
g}gﬁ H&L - (FL& +Av) _CO‘LH%@ = ||R¢L [&L - (FL§L +)‘U)] ||2

Likewise, for the code terms,

HR L(ﬁL - FL&L)HQ

. - 2
min [|p, = Tu& — Caulf, =

We are thus led to minimize the ‘reduced functional’

fr(§17 cee 751'; U)
= 3 IRs [0, — (L6 + M0)]||2 (32)
+ Ry, (D6, — 5|2

The ‘reduced equations’ to be solved in the usual LS sense
can therefore be displayed as follows:

Re, (FL§L + )‘U) =Ry, &L (33)
RPI,FL& = szﬁb (34)

1.4.2 Reduction operator

Let us concentrate on the ‘reduction operator’ (31). For
clarity, let us set

ﬁr;w = Rw'l? (35)

To give a more concrete idea of the action of this oper-
ator, let us now consider the typical situation where the
variance-covariance matrix of the observational data of
type v is of the form (see Liu 2002)

Vy = diag(n(r, s) 03,) (36)
Here, 03, is a ‘reference variance;’ 7(r, s) is a nonnegative

weight function. The variance-covariance matrix of the
SD data is then given by the relation (see Eq. (24))

Vy = diag(n;og) nj :==mn(ry,s;) +n(ra,s;)  (37)
From Eq. (26), we then have

U, = diag (\/%%) (38)

hence, from Eq. (28),

RIC) N SETC) ) = W
NG N \/mp

As ¢ =1 for all j, we then have
1 n
[Co] T [0] _22 9V [Cw

It then follows from Eqs. (35) and (31) that the compo-
nents of ¥,., are given by the formula

22_

0-'4’] 177]

9@ — 9©)
V) = o Opj = /Nj O (39)
J
where
n 1
90 = Zujﬂm Wi = 7,;7] T (40)
; Zk:l Nk

Note that oy; is the standard deviation of the single-

difference 1\9). With regard to the SD weights 1/n;
or 1/012% , 900 is a ‘barycentric single difference:’

" 9@ — 90

5

j=1 ]
According to its notation, this virtual single difference
is associated with a virtual satellite sg. The n ‘virtual
double differences’ 919) — 9¥(®) can thus be regarded as the
‘centralized values’ of the ¥()’s (Shi and Han 1992), or
equally well, as the ‘reduced values’ of the 9(9) ’s (Lannes
2007ab). Indeed, the minimum of

(weR)

H'M

UwJ

is obtained for w = ¥ . In other terms, in a concrete
manner, the action of R, consists in performing this type
of reduction.
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1.5 Contents

As specified in Sect. 2, the reduced equations (33) and (34)
lead to a linear system of type (2). The block matrices A;,
B; and b; are then defined, and likewise for the local vari-
ables uy,ug, ..., u; and the global variable v. The compo-
nents of v are then the float ambiguities of the problem.

The float solution o is refined recursively, epoch-by-epoch,
with the aid of the QR method. This method is intro-
duced in Sect. 3.1, and fully described in Sect. 3.2. The se-
lected QR implementation is based on ‘Givens rotations’
(see, e.g., Bjorck 1996); the corresponding operations can
thus be stored in memory very easily. This is very useful
for the variational method presented in Sect. 3.3. As the
latter is basically involved in the quality-control proce-
dures (see Sect. 4), the efficiency of the DIA method pre-
sented in Lannes 2007b is thereby improved. The state
transitions induced by the appearance and/or the dis-
appearance of some satellites are examined in Sects. 3.4
and 3.5, respectively. As specified in Sect. 3.6, the in-
verse of the variance-covariance matrix of ¢ is directly
provided by the QR method. The procedure that yields
the integer-ambiguity solution v is described in that sec-
tion.

This study is illustrated with dual-frequency examples
(Sect. 5). Some comments on the key points of our con-
tribution, and its extension to GNSS networks are to be
found in Sect. 6.

2 Block matrices of the global
RD equation

The reduced equations (33) and (34) lead to an equation
of type (2). We now clarify this point explicitly. The
extension to the dual-frequency case is straightforward
(see Sect. 5).

The local variable u; then reduces to the position vari-
able &;. The block matrix A; is then defined as follows:

Re.I';
A= | (41)
RP«; I

Note that RyI'; is obtained by applying the reduction
operator R, to each column vector of I'; (see Eq. (31)
and Sect. 1.4.2). The corresponding data block of Eq. (2)
is then

b = [ Koo ] (42)
Ry, Di

Let S; := {s1,82,...,5a,} be the series of satellites in-
volved in the observational process until epoch ¢; included.
A given satellite may disappear and reappear in the same
run. Such a satellite is then regarded as a new satellite. In

other words, whenever this occurs, a new satellite is added
at the end of this series. The n; satellites of epoch t; form
a subset S; of S;: n; < n;.

To introduce the reader to what is essential, we first re-
strict ourselves to the case where no satellite appears or
disappears in the current run [tq,...,¢;]: no state transi-
tion in this interval. The entries of the global variable v
are then the ambiguities v, v®), ... v(™) with n; = 7,
(see Eq. (10)). As clarified in Sect. 3.4, it is recommended
to class these ambiguities in reverse order. For example,
for n; = 7, the global variable v is then explicitly defined
as the column matrix (with 6 entries)

NG

»(©)
o®
o)

The phase block of B; is then of the form (see Eq. (33)):

[Bi],, =R S (n; =7) (44)

L A -
Here, the dots stand for 0. This matrix includes n; lines
(corresponding to the n; visible satellites of the system),
and n; — 1 columns (corresponding to the n; — 1 ambigu-
ities of the problem). The notation R[Zl] means that the
reduction operation is performed on vectors of R™:. Here,
as the reference satellite s; of the current run is visible,
the first line is nought (see Egs. (9) and (10)).

Note that the code block of B; is nought: [BZ-L; =0.

3 QR method

We first introduce the reader to the notion of QR factor-
ization (Sect. 3.1). We then show how to solve Eq. (2) in
a recursive manner (Sect. 3.2). The corresponding varia-
tional aspects are presented in Sect. 3.3. We then specify
how to handle the ambiguities when some satellites ap-
pear and/or disappear (Sects. 3.4 and 3.5, respectively).
Finally, Sect. 3.6 is devoted to the QR aspects concerning
the integer ambiguity problem.

3.1 QR factorization

Let us consider the following general LS problem: mini-
mize, with the Euclidean norm,

Az — y||Zn (A € R™" m >n, rank A =n)
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Qly
R 2
0
0 2!
A Y

Fig. 1 LS solution via QR factor-
ization. The action of QT on A
and y yields the basic QR structure
sketched here: the upper-triangular
matrix R and the column matrix z.
The solution of the equation Az =y
in the LS sense is then given by the
formula = R™'z (see Eq. (46)).

With regard to numerical accuracy, the best way to solve
this problem is to use a method based on the QR factor-
ization of A (see, e.g., Bjorck 1996):

a=al ] (43)

where R € R**™ ig an upper triangular matrix with pos-
itive diagonal terms, and Q € R™*™ is an orthogonal
matrix: QTQ = I,,, (the identity matrix on R™). We thus
have

= Q" (Az — y)|fm

- e[ 2] o

Az —y|

2
Rm

2

Rm

Setting QTy = z + 2’ where z € R® (see Fig. 1), it follows
that

|Az — y|3m = |Rz — 2|20 + 12|20 (46)

The LS solution is therefore given by the relation
F=R712 (47)

The problem can thereby be solved by back substitution.
In the case where z is confined to Z", the solution of the
problem is therefore defined as follows:

& = argmin ||R(zx — )|
TEL™

e (48)

Indeed, Rz — z = R(x — &).

According to Eq. (45), QR factorization consists in find-
ing an operator QT (and thereby an operator Q) such
that QTA has the block structure [R 0]T sketched in
Fig. 1. This operator is defined as a product of elemen-
tary orthogonal transformations. In the implementation
presented in this paper, the latter are Givens rotations

(see Egs. (2.3.10) to (2.3.13) in Bjorck 1996). Premul-
tiplication of A and y by such a rotation matrix affects
only rows k and ¢ of A and d. This matrix is defined so
that, for (a2 + a2) # 0,

NN @

where
a=(aj +a;)"/? (50)

It is easy to check that the cosine and sinus values ¢ and s
are then given by the following formulas

s=as/a (51)

Note that m — 1 Givens rotations are required for the first
column of A, m — 2 for the second, and so on (see Fig. 1).
It is important to point out that that the action of QT
can be stored in memory as the sequence of the succes-
sive (cosine, sinus) pairs (c,s) characterizing the succes-
sive Givens rotations involved in this operation.

c=a/a

3.2 Recursive QR factorization

We now show how to solve, in the LS sense and recur-
sively, the equation (2) induced by the reduced equations
(33) and (34).

Let us first consider the initialization epoch: epoch 1.
The problem is then solved in two steps (see Fig. 2). The
Givens rotations of the first step are those required for
finding the upper triangular matrix K;. The modified
version of B; thus obtained includes an upper block L,
and a lower block L. Likewise, the modified version of b,
includes two column submatrices: ¢; and ¢}. The Givens
rotations of the second step yield the upper triangular
matrix Rq; ¢} then yields (d; ,d}); see Fig. 2. Note that
K1, Ly and ¢; are not affected by these rotations. The
global solution is then obtained by back substitution via
the formula © = Ry 'd;. The local solution can then be
also computed by back substitution: @ = K; *(c1 —L19).

The first step of the next epoch (epoch 2) is similar to
that of epoch 1: one thus obtains the upper triangular
matrix K5. The modified version of By then includes an
upper block Ly and a lower block L. Likewise, the mod-
ified version of by includes two column submatrices: co
and ¢, (see Fig. 2). The Givens rotations of the second
step then operate on (R, , L}) and (d; ,ch) so as to trans-
form L into a zero block matrix. One thus gets Re and
(dy,dy); © is then updated via the relation & = R;'d,.
The local solution at epoch 2 can then be computed:
’&2 = K{l(CQ — LQ@)

In summary, one thus operates, recursively, with the key
structure shown in Fig. 3: K;, (L;,L;) and (¢, ,c}) are
computed from A;, B; and b;, R; and (d; ,d}) being then

computed from (R;_,,L}) and (d;_,, ¢}). We then have

Rl "
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A1 Bl bl
K1 L1 C1
Rl ) R2
dy| do
A
di
Ky Lo c2
!
2 ch| dy
As By bo

Fig. 2 LS solution via recursive QR factorization.
The principle of the recursive QR method is sketched
here for the first two epochs: epoch 1 with the in-
put block matrices A1, B and the data column ma-
trix b1; epoch 2 with the input block matrices Az, B2
and the data column matrix b;. The initialization
process is performed in two steps: Ki, (Li,L}),
(c1,ch) are built in the first step (see text for L),
whereas R1, (d;,d}) are built in the second. The
global float solution is then found by back substitu-
tion: © = Ry 'd,. The local solution is then given
by the formula @iy = K;'(ci — L19). Likewise, at the
next epoch, one first builds Ko, (L, L3), (ca,ch),
and then Rz, (dy,d3); ¥ is then updated via the re-
lation © = Ry 'd,. The local solution at epoch 2 can

then be computed: s = K2_1(CQ — Lyd).

hence v = R;ldi and 4; = K;l(ci — L;0). The detailed
implementation of this process must of course take ac-

count of the fact the code block of B; is nought.

3.3 Variational calculation

We now answer to the following question: what are the
variations Ad; and A¢ induced by a variation Ab; of b; (at
epoch t;)? From Eq. (2), these variations are the u-v com-
ponents at epoch t; of the LS solution of the equation

Ay By Aug 0
Ay By Aug 0
A,L' B,L' AUML' Abz
Av

By construction, the quantities Ady, ..., Ad;—; induced
by this equation are nought. The problem is therefore

Fig. 3 Recursive QR triangular
structure. According to the prin-
ciple of the recursive QR method
sketched in Fig. 2, the calculation
of R; and d; requires to have kept
in memory the upper triangular
matrix R;_; and the column ma-
trix d;—1 (see text).

the same as previously, Ad; being then computed from
Ac; with Ad;_1 = 0. This is why it is recommended to
store in memory the sequence of the successive pairs (c,s)
characterizing the Givens operators involved in the two
QR steps of epoch ¢; (see Fig. 2 and Eqs. (51) & (50)).

3.4 Handling the ambiguities when some
satellites appear

As shown in Eq. (43), the ambiguities are put in reverse
order. When some satellites appear at epoch t;, the first
columns of B; can then be processed as the last columns
of A; (see Fig. 2). To get R; and d;, one then proceeds
as illustrated in Fig. 4.

K L c

Fig. 4 Handling additional ambiguities.
When satellites appear at epoch t;, the
first columns of B; are processed as
the last columns of A;. The recursive
QR operation then yields the quantities
K, L,c, Rand d. To get R; and d;, one
then proceeds as illustrated here.

3.5 Handling the ambiguities when some
satellites disappear

Let us first consider the case where the reference satellite
of the current run disappears at epoch ¢;. For example,
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with regard to the situation corresponding to Eq. (44),
the phase block of B; then becomes

The calculation of R; and d; is then performed as usually.
Indeed, as the ambiguities to be considered remain the
same, R; 1 and d;_; must not be modified.

Let us now consider the case where, for example, the
satellites sy and sg disappear at epoch ¢;. The ambiguities
vz and vg of Eq. (43) can then be removed. The phase
block of B; is then of the form (see Eq. (44))

[B.], =Ry - A (ni =5) (54)

A

In the calculation of the upper triangular matrix R;,
R;_1 is then simply updated by removing its first two

lines and first two columns. Likewise, in the calculation
of d;, the first two entries of d; _; are then to be removed.

Let us now consider the case where, for example, satel-
lites s5 and s3 disappear at epoch t;, the phase block
of B; is then of the same as that defined in Eq. (54);
R;_1 and d;_; must then be modified as specified below.

One first performs the permutation

- T - o) T
() o)
o) o
2V Bl BN (55)
o) @)
e e

The columns of R;_; are then permuted accordingly. As
the matrix thus obtained, R._;, is no longer upper trian-
gular, one then performs Givens rotations on R;_; and
d;—1 so that R, becomes upper triangular: R, ; — R |,
d;—1 — d}_,. To complete the process, one then removes
the first two lines and first two columns of R/ ;, as well
as the first two entries of d_;.

3.6 Integer-ambiguity resolution

Let v be the float solution at epoch ¢;, and n be the num-
ber of its components. In single-frequency mode, depend-
ing on whether the reference satellite of the run [t1,¢;] is
visible or not, n is equal to n; — 1 or n; (respectively).
The ambiguity solution is then defined by the relation
(see Eq. (48))

» = argmin | R;(v — 9)]3a (56)
vEZL"

According to this formula, © is the point of Z" closest
to 0, the distance being that induced by the quadratic
form

q(v) = |Riv|zn = v [RT Ry (57)

Note that R} R, is the inverse of the variance-covariance
matrix of o:

RIR, =V, ! (58)

The QR method thus provides the Cholesky factor R; of
the matrix of ¢ directly. This is not the case in the usual
RLS filtering techniques. Indeed, the latter provide V;
which is then to be inverted.

The nearest-lattice-point problem (56) is solved in two
steps (see, e.g., Agrell et al. 2002). One first searches
a ‘reduced basis’ of Z" in which the matrix of ¢ is as
diagonal as possible. The problem is then solved in this
basis by using the corresponding ‘reduced form’ of R;:
R;: the integer-valued solution © is then expressed in the
original basis.

The first step corresponds to a decorrelation process. The
decorrelation methods to be implemented must somehow
refer to the principles of the LLL algorithm (an algo-
rithm devised by Lenstra, Lenstra and Lovasz in 1982).
Here, as the QR recursive process provides R; directly,
the LLL implementations of Luk and Tracy (2008) are
well suited to the problem. Denoting by 7 ’s the ma-
trix elements of R;, the following conditions can thus be
imposed:

(1) Thk > 2|7:k,l| (fOI' 1<k<t< n)

() 7%= (w-1/497%_,, (for2<k<n)

with 1/4 < w < 1. In practice, to speed up the second-
step procedure, w is set equal to 0.999. Note that Condi-
tion (ii) is not necessarily imposed in other decorrelation
methods (see, e.g., Xu 2001).

When in the data assimilation process, ¥ becomes consis-
tent with the model, the ambiguities are said to be fixed.
The local variable ; is then refined via a fixed least-
squares (FLS) process, i.e., a process in which the ambi-
guities are fixed at these values. Again, the QR method
is well suited to solving these problems.

4 Quality control

To prevent that biases on the SD data propagate unde-
tected into the ambiguity solution and the positioning
results, particular methods have been developed. The bi-
ases are first ‘detected,” then ‘identified,” and finally the
results are ‘adapted’ consequently (e.g., Teunissen 1990,
Hewitson et al. 2004). Note that these DIA methods are
to be implemented in all the modes to be considered: LS,
RLS and FLS.

The DIA method presented in this section is a simplified
version of that presented in Lannes 2007b. Its identifica-
tion principle is ‘local,” in the sense that the biases thus
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identified concern only the data of the current epoch. In
the present version, the corresponding analysis is based
on the results provided by the QR process at that epoch.
When the ambiguities are not fixed, the adaptation prin-
ciple is global: the local position, the current biases, the
current float ambiguities and the current QR triangular
structure (sketched in Fig. 3) are updated in the global
frame of the QR recursive process, without any approx-
imation. This was not completely the case in Lannes
2007b.

4.1 Local identification

The identification principle is based on the analysis of the
residual at epoch ;:

Note that 4; and © depend on b; in a linear manner. Let us
now denote by y; the column matrix of the SD data cor-
rected from the terms due to linearization (see Eqs. (42))

Yi = { f,;z } (60)
In what follows, H; is the operator that yields w; from y;
(see Egs. (42) and (59)):

For clarity, we now omit subscript ¢. Denoting by w,
and wy the code and phase components of w (respec-
tively), we then have, in single-frequency mode,

lwll* = llwe | + [lwp|® (62)
where ||wy | =3 lwj,|* for ¢ = p or ¢. When [|w]|?

is too large (see Sect. 4.3), we then search to identify, in
the SD data y, a global bias of the form

n
Jyp=1

> jees, BioCis
a=| T (63)
>, e9, BinCin

The ‘outlier sets’ {1y and 2, are some ‘small subsets’
of {1,...,n}. With regard to the phase (for example) the
corresponding SD model is the following (see Eq. (9)):

o) —B;, ifjEeQy
o) otherwise

p(]) + )\”U(j) + a4+ g(j)

The problem is to identify {24 and 2, while getting least-
squares estimates of the corresponding biases 3;, and 3;,,.
The guiding idea is to the consider the contribution of
these biases to w.

As Aw = H Ay (see Eq. (61)), we must first see what
is the contribution of these biases to y. At this level,
the correction terms induced by e;, and e;, are denoted
by zj, and z;,:

set €, 0
yEY -z, ::[ 6‘*”} %y ::[ |

A notation such as a = a 4+ b means ‘a is set equal to the
current value of a+b.” The variations of w induced by e;,
and e;, are therefore characterized by the quantities f;,
and f;, defined below:

ngU)*Hij fj¢ Z:H2j¢ fjp Z:H,ij (65)
As aresult, the variation of w induced by the global bias z
is characterized by the vector

Mz = Z Bjy [ + Z Bj, fin (66)

Jo€Qy Jp€Qp

We are then led to solve, in the least-square sense, the
equation w— Mz ‘="0, in which the column vectors of M,
the f;,’s and f;,’s, have to be thoroughly selected. As
clarified in Sect. 4.3, this operation is performed via a par-
ticular Gram-Schmidt orthogonalization process which is
interrupted as soon as the corrected data are consistent
with the model.

4.2 Global adaptation

Once the outlier sets 24 and 2, have been identified, the
model is to be updated consequently: A; is completed
by adding the columns associated with the corresponding
bias variables 3;, and 3;,. From Eqgs. (42) and (64), these
column matrices are respectively of the form

I g

0
The global QR recursive process is then updated accord-
ingly. The position variable, the SD biases and the float
ambiguities are thus refined, as well as R; and d; in par-
ticular (see Fig. 3). When the QR process is initialized,
or when the ambiguities are fixed, the SD biases provided
by the adaptation process coincide with those provided by
the identification procedure (see Sect. 4.1 and steps 2.4
& 2.5 in Sect. 4.3). The LS problem to be solved, which
is then the same, is simply handled in a different manner.

4.3 Implementation

In the procedure described in this section (see the flow
diagram shown in Fig. 6), we denote by Q the set of
identified outliers. At the beginning of this procedure,
2 is therefore empty: Q := Q4 UQ, = 0. For simplic-
ity, we now restrict ourselves to the limit case defined in
Sect. 1.4.2). We then set

|wlmax = max |w;, | (68)
Jy &

i.e. here: |w|max = max|wj;,|. Given some probability of
false alarm 6y, we define g as the upper 6y/2 probability
point of the central normal distribution: xo := Ny, /2(0,1).
For example, when 6y is equal to 0.001, x¢ is of the order
of 3.
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1. Entrance local test

From Egs. (59), (42) and (35), w is a reduced quantity.
According to Eq. (39), in the absence of any bias, |w|max
must therefore be smaller than yo. In other terms, if
|w|max < X0, no outlier is to be searched: one then goes
to step 4. Conversely, if |w|max is very large compared
to xo (say larger than 1000 for example), the QR process
is to be reinitialized (see Sect. 3). In the other cases, the
DIA procedure is initialized by setting vt = 1 and II = 0;
tis a recursive index; the meaning of the auxillary set II is
defined in step 2.2 as soon as it begins to be built. At this
stage, in the single-frequency case and in FLS mode (for
example), the local redundancy is given by the formula
m=2(n-1)-3.

2. Recursive identification of the outliers

2.1. Current set of potential outliers

Given some nonnegative constant £ < 1, form the current
set of potential outliers (see Fig. 5):

e = {jy & Q: [wj,| > Alwlmax}

|w5¢|

3¢ D¢ 3p  p
Phase Code

Fig. 5 Notion of potential outliers in reduced
mode. The quantities |w;,| shown here (in
single-frequency mode) are the absolute val-
ues of the components of the (updated) resid-
ual w (see step 2.7). In this illustration,
n =17, k= 0.5 and Q = (); four potential out-
liers are identified: 34, 54, 3, and 5,. Here,
the phase outlier 54 is likely to be the domi-
nant potential outlier (see step 2.3).

2.2. For each potential outlier j, € Il

Perform the following successive operations:

a) When j, ¢ II, compute (see the context of Eqgs. (64),
(65), (61), (42) & (59) and Sect. 3.3)

Zjdv lf’gb:(b

o= H-
Tis zj, ifv=p

Then, set

iy = Ti I = { Vel

IMu{j,} otherwise

ifIr=0

By construction, II is the set of potential outliers j,
for which f; has already been computed.

b) If t = 1 go to step 2.2¢. Otherwise, at this level,
{95 }a<¢ is an orthonormal set. (This set is built, pro-
gressively, via step 2.4.) Then, for each integer q < ,
consider the inner product defined as follows:

(94 - 94,)

Z (Gazpr * Giwr)

'=¢,p

S,

This sum includes two terms. Depending on what
' refers to (¢ or p), gg.,» denotes the phase or code
component of g7, and likewise for g;,;y . If ¢4 j, has
not been computed yet, compute it, store it in mem-
ory, and perform the Gram-Schmidt orthogonalization
operation

set o

9y = iy ~ Sa,jupYq
By construction, ¢q;, = (9q - fj,). At the end of all
these operations, g;, is orthogonal to gg for any q < t.
¢) Consider the projection of w on the one-dimensional
space generated by g;,, ie., (hj, - w)h;, where
hj, = 9j,/ll95,|l- The norm of this projection is equal

to |(hj, -w)|, the absolute value of the quantity

Yip = (gjw 'w)/gjw O, = ”gjw”
Explicitly,
(gjp - w) = Y (G W)
Y'=¢,p
lgs > = Y lgjem |’
'=¢,p

2.8. Dominant potential outlier

The identified outlier 7, is defined as the dominant po-
tential outlier, i.e., the potential outlier for which |v;,| is
maximal:

Jp = arg max|y;,|
oy €1l
We then set
) o [ Awe} ifr=1
we = Iy Q= )
QU{w.} ifr>1
Ve = Yo 95 = G/ Ou.

Superscript o stands for omega (and outlier). At this

level, 2 is the current set of identified outliers:

Q= {Wq};:1

By construction, {gg}5-; is an orthonormal basis of the
current range of M; Z;zl Va9 is the projection of w on
this space. With regard to Eq. (66), we then set

ﬂs = @ut fto = fwt
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B QR solution

B Residual w I

PR

Entrance test
on [w|max

—
1 Reinitialization

Potential outliers

B Dominant potential outlier
B Update SD biases

B Update redundancy

l

B Update w

-— Inner test

I —
> on |wlmax

B Global adaptation

Fig. 6 Flow diagram of the DIA procedure in reduced
mode. At each step of the identification process, the (up-
dated) residual w is analyzed on the grounds of Eq. (68):
see steps 1, 2.7 and 2.8. This allows the potential outliers
to be selected (see Fig. 5). The outliers can thus be iden-
tified, in a recursive manner, via a particular orthogonal-
ization Gram-Schmidt process. This QR Gram-Schmidt
process also provides the SD biases, and thereby the cy-
cle slips if any. When the ambiguity are not fixed, these
biases are slightly refined through the global adaptation
process described in Sect. 4.2.

2.4. Components of g; in the basis of the fJ’s

These components are denoted by ug,.:

Tt

o] [e]

gt = E :uq,ffq
q=1

They are computed via the QR Gram-Schmidt formulas
(see, e.g., Bjorck 1996)

1 .
- Z Ug,q' Sqwe g <t
Que gy
Ug,x =
1 .
— ifg=rt
Ow.

th

for 1 < g <. The ug,.’s are the entries of the t*" column

of an upper triangular matrix U.

2.5. Update the SD biases

According to Eq. (66), the SD biases 37 are the compo-
nents of -0, vag; in the basis of the f5’s:

v t
D% =D 0fs
q=1 q=1

Denoting by [7°] the column matrix with entries v; (from
q =1 to t), and likewise for [3°], we have

[6°] = UY°]
The SD biases are therefore to be updated as follows:

{ B+ ugere g <t

. = . (for 1 <gq<r)
ifg=rt

o
ut,t’yt

2.6. Update the local redundancy
m=m—1

If m =0 go to step 3.

2.7. Update w and |w|max

set

o _o
W=wW =" G

|| max = max |ij
Ju EQ

2.8. Inner local test

If |w/max > X0, update the recursive index: t=t + 1.
Then, go to step 2.

3. Global adaptation

Update the global QR recursive process by taking account
of the identified bias variables (see Sect. 4.2).

4. End

5 Examples

The QR implementation presented in this paper was vali-
dated by processing two GPS-data sets in dual-frequency
mode (L1-C/A, L2-P). Shortly, these sets correspond to
the following cases:

e Static case. Static reference receiver; static user
receiver; 4907 epochs at 1 Hz; baseline size of the
order of 250 m.

e Kinematic case. Static reference receiver; mo-
bile user’s car receiver; 973 epochs at 2 Hz; maximal
baseline size of the order of 850 m.

The static case was studied to check our programs. In
both cases, the standard deviations oy and o, were of the
order of 3 mm and 55 cm, respectively (see Eq. (36)).
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The reduced data were therefore centralized differences

These data were processed in forced RLS mode (with ini-
tializations in LS mode).

As illustrated in Eq. (43), the float ambiguities were put
in reverse order. Furthermore, to benefit from the anal-
ysis presented in Sects. 3.4 and 3.5, the L1 and L2 ambi-
guities were interwoven, as well as the L1 and L2 data in
their phase and code column submatrices.

The optimal and suboptimal ambiguity solutions, © and ©
respectively, were obtained (at each RLS epoch) by solv-
ing the nearest-lattice point problem defined in Sect. 3.6.
It was thus possible to control the value of the ‘global
ambiguity-resolution parameter’

[l [
01 = ————— (69)
5=l
The ‘local ambiguity-resolution parameter’
w
0y o= [ Tlns (70)
|w|max

was also computed. Here, w and @ denote the values of
the optimal and suboptimal residuals, respectively; note
that the bias variables are then included in the local vari-
able u;. When

< 04

~

01 S 05 or oo (validation criterion) (71)

the ambiguities can be regarded as fixed.

All the programs were written in C language, including
the LLL algorithm and the nearest-lattice point section.
The first data set of 4907 epochs was thus processed, with
k = 0, in about five seconds on a standard personal com-
puter. With x = 1, this CPU time was reduced to three
seconds with exactly the same results. The second data
set of 973 epochs was processed in about two seconds for
k = 0, and in about one second for k = 1.

5.1 Static case

In this case, due to major data-frame problems, the pro-
cess was reinitialized at the following epochs: 1301, 3010
and 4689. As specified below for the first run, the ambi-
guities were fixed immediately. The position of the user
receiver was thus retrieved, up to one or two centimeters,
except for the initialization epochs of the four runs to be
considered: 1, 1301, 3010 and 4689 (see Fig. 7).

We now concentrate on the first run. Seven or eight satel-
lites were then visible: satellites 2, 5, 7, 8, 9, 23, 26 and
sometimes 21. The latter appears and disappears (in an
alternate manner) at the following epochs: 365, 878, 883,
884, 887, 888, 892, 896, 911, 936, 1004, 1098, 1130.

-303.37

of type (39) with n; = 2 for all j; xo was set equal to 3. -s033s

-303.39
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Fig. 7 Static case (4907 epochs). Relative coordinates
(expressed in meters) of the user and reference receivers
in the Earth-centred Earth-fixed (ECEF) frame: z,y, 2
(from the top to the bottom); see text and Fig. 8.
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Fig. 8 Static case (4907 epochs). Ambiguity resolution
parameters g1 (at the top) and g2 (at the bottom); see the
context of Egs. (69) to (71). The ambiguities are fixed,
except at the initialization epoch 1 and at the reinitial-
ization epochs 1301, 3010 and 4689 (see Fig. 7 and the
corresponding red ticks). The other red ticks correspond

to the epochs where a new satellite appears or reappears.

At epoch 1 (in LS mode), a code bias was identified
on satellite 2 at frequency fi; see steps 2.4 and 2.5 in
Sect. 4.3. Its value, 7.02 m, was of course the same as
that found by the adaptation process; see Sect. 4.2 and
Fig. 6. The data of epoch 2 were of course processed in
RLS mode. Again, a code bias was identified on satel-
lite 2. As expected, its value, 6.70 m, was very close to
that provided by the global adaptation process: 6.77 m.
The ambiguities proved then to be fixed (see Table 1):
01 was smaller than 0.16 with go smaller than 0.65 (see
Fig. 8 and Egs. (69) to (71)). The code bias thus found
was 5.42 m. Here, |t|max = 3.22 and 1] max = 5.07.
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Table 1: Static case. Dual-frequency
DD ambiguities. The ambiguities shown
here were fixed at epoch 2, just after the

initialization epoch (see text).

satellite f fo
2 0 0
5 995 532 783561
7 1585927 329961
8 —1542232 | —893259
9 13115987 | 10232032
23 6934437 | 4872157
26 10017404 | 7778866

As soon as satellite 21 appeared (at epoch 365), the cor-
responding ambiguities were immediately fixed:

satellite f fo
21 —1632504 | —777230

At epoch 1093, large phase biases were identified on the
L2 and L1 SD phase data of that satellite: 0.143m and
0.107 m, respectively. As shown by the results obtained
at the next epoch, these biases announced effective cycle
slips. Indeed, at epoch 1094, one cycle slip was identi-
fied on the L2 SD phase of satellite 21, and likewise for
the L1 SD phase of that satellite. More precisely, the bi-
ases identified by the RLS DIA procedure were then the
following:

ﬁf2,21¢ = 0.227m ~ )\2
ﬁf1,21¢ = 0.195m:)\1
Bt 21, = —4.861m
ﬂfzﬁglp = 3.974m

At that epoch, the entrance value of |w|max was large
compare to 3 : 28.40. The outliers were then identified
as specified below:

Outlier | |w|max
(f2:215) | 29.64
(f1:21) 5.49
(f1:21,) | 4.49
(f2:21,) | 2.30

Here, the value in the right-hand side column is the cor-
responding residual value of |w|max. Corrected from the
cycles slips thus identified, the data were then processed
without any large phase biases until the disappearance of
satellite 21 at epoch 1098, and then without any difficulty
until the major data-frame problem at epoch 1301.

In the second run, from epoch 1301 to epoch 2060 in-
cluded, all the previous 8 satellites were visible. The ref-
erence satellite s1 (satellite 2) then disappeared at epoch
2061. A similar situation occured in the fourth run with

nine satellites: the reference satellite s; (satellite 1 in that
run) disappeared at epoch 4743. To check the section of
the program corresponding to the disappearance of other
satellites in RLS mode (see Sect. 3.5), the SD data of
satellite so (then satellite 5) were discarded at epoch 4775.
As expected, the corresponding results were correct.

From epoch 4897 to the end of the fourth run, the optimal
and suboptimal sets of L1 ambiguities coincide up to an
integer constant: the unity for all j; the optimal and
suboptimal sets of L2 ambiguities are then identical. As
at those epochs, the reference satellite is not visible, the
reduced values of © and v are the same (see Eq. (53) and
Egs. (39) & (40) with n; = 2 for all j). It then follows
that w = w, hence p; = 1 (see Fig. 8). The ambiguities
are however fixed. Indeed p; is then less than 0.04 (see

Eq. (71)).
5.2 Kinematic case

In this case, nine to eleven satellites were visible: satel-
lites 4, 9, 16, 18, 19, 22, 23, 24, 28, 29 and 32. The ambi-
guities were immediately fixed with o1 less than 0.15 and
02 less than 0.33 (see Table 2 and Figs. 9 & 10; satellite 9
was not then visible).

Table 2: Kinematic case. Dual-
frequency DD ambiguities. The ambigu-
ities shown here were fixed at epoch 2,
just after the initialization epoch (see

text).
satellite f fa
4 0 0
16 —577343 —425713
18 —489 386 —357110
19 16 040 40057
22 187137 178615
23 —611408 —448 519
24 —188663 —122172
28 —1651396 | —1238734
29 363726 308953
32 —19687 2051

A major data problem appeared at epoch 222. The pro-
cess was then reinitialized by the RLS DIA procedure.
Indeed, the entrance value of |w|nax Was greater than 106
(see step 1 in Sect. 4.3). The ambiguities were then fixed
again, but only eleven seconds later (after epoch 244; see
Fig. 10 and Eq. (71)).

Just to show the efficiency of our approach, cycles slips
were imposed at epoch 960: —1 cycle in the reception of
the fi-signal coming from the reference satellite; 2 cycles
in the reception of the fs-signal coming from satellite 23;
1 cycle in the reception of the f-signal coming from satel-
lite 29.
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Fig. 9 Kinematic case (973 epochs). Relative positions
(in meters) of the user and reference receivers in the
ECEF frame: z,y,z (from the top to the bottom); see
text and Fig. 10.
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Fig. 10 Kinematic situation (973 epochs). Ambiguity
resolution parameters o1 (at the top) and g2 (at the bot-
tom); see the context of Eqgs. (69) to (71). The ambi-
guities are fixed, except at the initialization epoch and
from epochs 222 to 244 included (see text and the cor-
responding red ticks). The other red ticks correspond to
the epochs where a new satellite appears or reappears.

At that epoch, the entrance value of |w|max Was then of
the order of 69. In the RLS DIA procedure, the outliers
were then identified as follows:

Outlier | |w|max
(f2;234) | 46.57
(f2:294) | 29.06

(f1,40) 2.66

The SD biases finally obtained by the process were then

the following;:

0.488m ~ 2\,
ﬁf2 294 — 0.239m ~ )\2
6f1; 4¢ = 70196[1’1 ~ *)\1

ﬁf2,23¢ =

Corrected from the cycles slips thus identified, the data
were processed without any difficulty until the end of the
run (epoch 973).

6 Concluding comments

As clarified in Sect. 1.4, the notions of reduction and cen-
tralization correspond to the same concept. The variance-
covariance matrix of the reduced or centralized data is
the identity. For example, in the single-baseline case, the
reference formulas are Egs. (39) and (40). In the central-
ized approaches, the QR method can therefore be applied
directly. This not the case in the usual DD approach.
Indeed, the Cholesky factorization of the inverse of the
variance-covariance matrix of the DD data must then be
performed. Moreover, in the centralized approaches, all
the SD data are handled in the same manner. The cor-
responding numerical codes are therefore more readable
than those of their DD versions.

The QR implementation of GNSS centralized approaches
is also well suited to quality control. The search for the
potential outliers is performed by simple inspection of
the absolute value of the components of the successive
updated residuals (see Fig. 5 and step 2.7 in Sect. 4.3).
The statistical tests are thereby very simple (see steps I
and 2.8 in Sect. 4.3). Moreover, as the Givens rota-
tions of the QR recursive processes can easily be stored
in memory, the variational calculations involved in the
DIA method can be performed in a very efficient man-
ner; see Sect. 3.3 and step 2.2 in Sect. 4.3. Furthermore,
the QR global adaptation step of the DIA method nicely
completes the QR Gram-Schmidt step 2./ of the local
identification process described in Sect. 4.3. The SD bi-
ases, among which the cycles slips (if any), are thus de-
termined in two different ways.

For simplicity, the study presented in this paper was re-

stricted to the case of RTK observations with a single

baseline of local scale. The extension to multiple-baseline

networks with possibly missing data follows the guidelines

of the present contribution. The main points to be devel-

oped concern the following topics:

— Handling the integer ambiguities;

— Reduction of the undifferential optimization problem
(equivalent of Sect. 1.4 for the undifferential data);

— QR solution of the reduced optimization problem:;

— Integer-ambiguity resolution;

— Identifiable biases;

— Related DIA method.
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