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Abstract 
 
The integration of Global Positioning System (GPS) with 
an inertial measurement unit (IMU) has been widely used 
in many applications of positioning and orientation. The 
performance of a GPS-aided inertial integrated navigation 
system is mainly characterized by the ability of the IMU 
to bridge GPS outages. This basically depends on the 
inertial sensor errors that cause a rapid degradation in the 
integrated navigation solution during periods of GPS 
outages. The inertial sensor errors comprise systematic 
and random components. In general, systematic errors 
(deterministic) can be estimated by calibration and 
therefore they can be removed from the raw observations. 
Random errors can be studied by linear or high order 
nonlinear stochastic processes. These stochastic models 
can be utilized by a navigation filter such as, Kalman 
filter, to provide optimized estimation of navigation 
parameters. Traditionally, random constant (RC), random 
walk (RW), Gauss-Markov (GM), and autoregressive 
(AR) processes have been used to develop the stochastic 
model in the navigation filters.  
 
In this technical note, the inertial sensor errors are 
introduced and discussed. Subsequently, a six-position 
laboratory calibration test is described. Then, 
mathematical models for RC, RW, GM, and AR 
stochastic models with associated variances for gyros and 
accelerometer random errors are presented along with a 
discussion regarding ongoing research in this field. Also, 
the implementation of a stochastic model in a loosely 
coupled INS/GPS navigation filter is explained.  
 
Keywords: GPS, INS, Calibration, Random Error, 
Stochastic Process. 

 
 
1. Inertial Sensor Errors  
 
The performance of a GPS-aided inertial navigation 
system is mainly characterized by the ability of the IMU 
to bridge GPS outages. This ability of the IMU to bridge 
GPS outages depends on the inertial sensor errors, which, 

if not treated properly, cause a rapid degradation in the 
integrated navigation solution during the periods of GPS 
outages. Inertial sensors are used to collect measurements 
that can be processed using inertial processing software 
to estimate position, velocity, and attitude that can be 
integrated with GPS data to provide a complete 
navigation solution. An inertial sensor is made up of three 
gyroscopes (shortly gyros), and three accelerometers. A 
gyro is device that maintains orientation in space, and 
thus can sense the rate of change of direction (angular 
rate) of the vehicle on which is mounted. The rate of 
change of direction (angular rate) can mathematically be 
integrated to provide attitude changes over time. 
Similarly, an accelerometer senses linear accelerations, 
which when integrated in time give velocity changes, and 
when integrated twice give position changes over time. 
The major error sources in gyros and accelerometers are 
biases, and scale errors related to non-orthogonalities of 
the axes. Hence, due to the integration process, biases and 
scale errors impose unstable errors in positions, 
velocities, and attitudes. The growth of these errors 
depends on the type of inertial sensor used (high, medium 
and low grade). The inertial sensor errors can be 
classified into two types, deterministic (systematic) and 
random (Nassar, 2005).  
 
Major deterministic error sources include bias and scale 
errors, which can be removed by specific calibration 
procedures; Park and Gao (2002) discussed such 
laboratory calibration procedures. However, the inertial 
sensor random errors primarily include the sensor noise, 
which consists of two parts, a high frequency and a low 
frequency component (Skaloud et al., 1999). The high 
frequency component has white noise characteristics, 
while the low frequency component is characterized by 
correlated noise (Skaloud et al., 1999).  De-noising 
methodology is required to filter the high frequency noise 
in the inertial sensor measurements prior to processing, 
using a low pass filter, a wavelet or neural network de-
noising procedure (El-Rabbany and El-Diasty, 2004). 
Several studies have focused on evaluating such 
techniques (Skaloud et al., 1999; Nassar, 2005; Abdel-
Hamid et al., 2004). On the other hand, the low frequency 
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noise component (correlated noise) can be modelled 
using random processes such as, random constant, 
random walk, Gauss-Markov or periodic random 
processes (Nassar, 2005). The most commonly used 
process is the first-order Gauss-Markov process. The 
development of the stochastic model for an inertial sensor 
is one of the most important steps for building a reliable 
integrated navigation system. The reason is that the 
inertial sensor propagates large navigation errors in a 
small time interval. Unless an accurate stochastic model 
is developed, the mechanization parameters (velocity, 
attitude, position) will be contaminated by the 
unmodelled errors and the system performance will be 
degraded (El-Diasty et al., 2007b). 
 
Let us assume that inertial sensor measurements are 
denoted by imuω  and imuf  representing direction rate of 
change (angular rate) and linear acceleration, 
respectively. They can be written approximately as 
functions of the true direction rate of change ω  and the 
true linear acceleration f  in the body frame (because 
very small inertial sensor second order errors are 
neglected) as (Titterton, 2004; El-Diasty et al., 2007b): 
 

gggggimu wbb]SSI[ +δ++ωδ++≈ω , ( 1 ) 

aaaaaimu wbbf]SSI[f +δ++δ++≈ , ( 2 ) 
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where I is the identity matrix (unitless), gS  and aS  are 
matrices (unitless) comprising scale errors (diagonal 
elements) and non-orthogonality errors (non-diagonal 
elements) of the gyro and accelerometer respectively, 

gb and ab  are biases (deg/s for gyros and m/s2 for 

accelerometers), gSδ  and aSδ  are matrices (unitless) 
comprising residual scale errors (diagonal elements) and 
residual non-orthogonality errors (non-diagonal 
elements), gbδ  and abδ  are residual biases (deg/s for 

gyros and m/s2 for accelerometers), and gw and aw  are 
zero mean white noises (deg/s for gyros and m/s2 for 
accelerometers).  Biases and scale errors are either 
estimated through laboratory calibration or can be 
modelled as additional parameters in Kalman filter. In 
this study we discuss the laboratory calibration approach 
that allows the direct estimation of the bias and scale, 
which we can then remove from the raw measurements 

imuω  and imuf  (i.e. before implementing the inertial 
mechanization equations). Then, the corrected 
measurements b

ibω  and bf  (which will be the input to 
inertial mechanization equations) are: 
 

( )[ ] ( ) ggg
b
ib wbSI +δ+ωδ+≈ω , ( 3 ) 

( )[ ] ( ) aaa
b wbfSIf +δ+δ+≈ . ( 4 ) 
 

However, b
ibω  and bf  still contain random errors: gSδ  

and aSδ  are matrices comprising residual scale errors 
(diagonal elements) and residual non-orthogonality errors 
of the gyro and accelerometer respectively, gbδ  and 

abδ  are residual biases, and gw  and aw  are zero mean 
white noises. 
 
The residual biases and residual scale errors are the 
inertial random errors and can usually be modelled by 
stochastic models inside a Kalman filter at each epoch 

and then removed simultaneously from b
ibω  and bf  

(epoch by epoch) during the mechanization equation 
implementation. This stochastic model can be random 
constant, random walk, or Gauss-Markov process 
(Grewal et al., 2007; El-Diasty et al., 2007b). The 
resultant measurements at each epoch are b

ibω̂  and bf̂ , 
which represent the optimal estimation of the gyro and 
accelerometer outputs and they can be used to provide an 
accurate and continuous navigation solution. In the next 
section we discuss the six-position calibration laboratory 
test used to estimate the gyro and accelerometer biases 
and their scale errors ( gb , ab , gS , aS ). 
 
2. Laboratory Determinations of Inertial 

Biases, Scale, and Non-orthogonality Errors 
 
The laboratory calibration of an IMU is well documented 
in Titterton (2004) and Salychev (1998). Also, Shin and 
El-Sheimy (2002), and Syed et al. (2007) are two key 
papers that describe the practical implementation for 
these calibration methods and show ongoing research in 
the area of inertial navigation. In laboratory calibration, a 
six-position static test (up and down position for the three 
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inertial sensor axes) is commonly performed to collect 
the gyro and accelerometer measurements. From this test, 
an estimate of the gyro and accelerometer bias, scale, and 
non-orthogonality errors can be obtained. The bias is a 
systematic error called bias offset, which is the offset of 
the sensor measurement from its true value. The scale 
error describes the error in the relationship between the 
sensor output signal and the measured physical quantity. 
The non-orthogonality error is the error resulting from the 
imperfection of mounting the inertial sensors along three 
orthogonal axes at the time of manufacturing. Fig. 1 
shows the up and down positions and the excitation 
(reference) signal in each position (we have a natural 
excitation signal for accelerometers which is local gravity 
g  in the lab (Salychev, 1998)). We excite the gyro by a 

known rotational rate knownω  using a calibration 
turntable (Titterton, 2004). Therefore, all three 
accelerometers can be tested using two-position static 
tests in the zenith direction, and any gyro sensor can be 
tested using a two-position dynamic test in any direction 
(Titterton, 2004). It should be noted that the direction of 
the known rotational rate knownω  in Fig. 1 is the 
clockwise direction for both, up and down positions. 
 

 
Fig. 1 Up and down positions of the IMU for calibration 
of one axis – the dotted arrows describe the true 
excitation (reference) signal. 
 
There are two methodologies that can be employed to 
find the calibration parameters ( gb , ab , gS  and aS ). In 
this technical note, we simply call these two methods six-
position direct method and six-position weighted least 
squares method.  In both methods, data are collected in 
each position for a minimum of 30 seconds (which can 
give 3000 samples if the sampling rate is 100 Hz). Then 
the gyro and accelerometer biases ( gb  and ab ), scale, 

and non-orthogonality error matrices ( gS  and aS ) can be 

calculated. It should be noted that gS  and aS  are 
matrices comprising the scale errors (diagonal elements) 
and non-orthogonality errors (non-diagonal elements). 
 
2.1 Six-Position Direct Method 
 
Assume that we want to calibrate the X-axis gyro and 
accelerometer errors of an IMU. In the direct method the 
biases and scale errors can only be estimated (but non-
orthogonality errors are neglected) from the two positions 
(X-axis up and X-axis down) by taking the average of the 
measurements in three steps as follows: 
 
Step1: assume that the gyro and accelerometer 
measurements at epoch k are: 
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where Xup means IMU X-axis is in up direction, Xdn 
means X-axis is in down direction, knownω  is known 
rotational rate and g  is the local gravity. 
 
Step2: average the gyro and accelerometer measurements 
as follows: 
 

XgknownXXg
Xup
imu b)ω()s1()(Av +−⋅+≈ω , ( 9 ) 

XaXXa
Xup
imu b)()s1()f(Av +−⋅+≈ g , ( 10 ) 

XgknownXXg
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imu b)ω()s1()(Av +⋅+≈ω , ( 11 ) 

XaXXa
Xdn
imu b)()s1()f(Av +⋅+≈ g , ( 12) 

 

 

 
where Av  is the average operator. It should be noted that 
when the measurements are averaged for one position, 
noise ( Xgw  and Xaw ) and residual errors 

( XXgsδ , Xgbδ , XXasδ  and Xabδ ) are eliminated 
because their expected values (mean) are zeros.   
 
 
 
 

g  

knownω  

g  

knownω  

a. Up position b. Down position 
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Step3: estimate the bias and scale errors using the 
following equations: 
 

2
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The bias and scale errors for Y-axis and Z-axis can be 
estimated using the same approximate method and steps 
when Y-axis and Z-axis are configured in the up and 
down positions, respectively. In this methodology we use 
two measurements for each axis to estimate the biases 
and scale errors (in total six measurements are used for 
the three axes). The advantage of this method lies in its 
simplicity of implementation. However, the disadvantage 
is that the non-orthogonality errors can not be estimated.  
 
2.2 Six-Position Weighted Least Squares Method 
 
In this method, all biases, scale errors and non-
orthogonality errors for the three axes X, Y and Z are 
estimated using all the measurements from the six-
position configuration. Assume that we wish to estimate 
the accelerometer errors. From the six-position test we 
expect to have the following observation equations: 
 
1. when the X-axis is in the up direction, we estimate 

three averages from the three accelerometers: 
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2. when the X-axis is in the down direction we estimate 

three averages from the three accelerometers: 
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3. when the Y-axis is in the up direction we estimate 

three averages from the three accelerometers: 
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4. when the Y-axis is in the down direction we estimate 

three averages from the three accelerometers: 
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5. when the Z-axis is in the up direction we estimate 

three averages from the three accelerometers: 
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6. when the Z-axis is in the down direction we estimate 

three averages from the three accelerometers: 
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The collection of the above six observation equations 
(from Eq. 17 to 22) provides the following single 
observation equation in matrix form: 
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Now we estimate the calibration parameters as follows: 
 

1TT )P.A(A)P.A(WX −⋅⋅⋅=ˆ , ( 27 ) 
  
where  

1P −∑⋅σ= 2
0  ( 28 ) 

is the 6×6 weight matrix, 2
0σ  is the a-priori variance 

factor (usually 12
0 =σ ), and ∑  is the sample variance-

covariance matrix comprising the sample variances of the 
accelerometer averages from the six-position test in the 
diagonal and zeros in the non-diagonal elements. The 
gyro six-position test with least squares estimation 
follows the same methodology but the 18 average 

accelerometer measurements )f(Av imu
•  are replaced by 

the 18 average gyro measurements )(Av imu
•ω  and the 

local gravity g  is replaced by the known rotational rate 

knownω   from the turntable.  
 
It should be noted that the static test of high grade inertial 
sensors can be used to find the scale error of the gyros 
because the spin of the Earth ( hdeg/0141.15ωEarth ≈ ) 
can be measured. In this case, )sin(ωω Earthknown φ⋅=   
in Eq. (14), where φ  is the latitude of the inertial sensor 
position during the calibration test. This case is not valid 
in the low cost inertial sensors because the Earth’s spin is 
completely buried in high level white noise (low signal to 
noise ratio). Also, it is worth noting that for low cost 
inertial sensors, the bias and scale errors are temperature-
dependent as indicated by Abdel-Hamid et al. (2004). 
Therefore, it is strongly recommended to perform the 
calibration test at different temperature points to estimate 
the inertial sensor bias and scale errors as functions of 
temperature.   
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Ongoing Research in Calibration   
 
An effective calibration method is the multi-position 
approach (Shin and El-Sheimy, 2002), based on multiple 
independent positions of the sensors (18 different 
positions). This method does not require precise 
alignment of the IMU axes and can be applied on-the-fly 
in the field. This method uses the combined three-axis 
effect of the local gravity and Earth rotational rate to 
generate the gyro rotational rate excitation signal needed 
for the calibration. The main disadvantage of this method 
is that the employed gyro rotation rate excitation signal is 
the Earth rotational rate, which is a weak signal and can 
result in observability problems when estimating the scale 
and non-orthogonality errors. The scale and non-
orthogonality errors of low-cost sensors, if not accurately 
estimated, can contribute significantly to the overall 
position error during prediction periods (INS-only 
solutions when GPS outages exist). Thus, instead of using 
the Earth rotational rate as an  excitation signal, Syed et 
al. (2007) modifies the multi-position calibration method 
using a rotational rate excitation from a turntable with 26 
independent sensor positions (as opposed to the 18 
positions in the Earth rotation method). Another 
advantage of the modified multi-position calibration 

















−+
−+

−+
=

gg
gg

gg

Z
Zdn
imuZ

Zup
imuZ

Ydn
imuZ

Yup
imuZ

Xdn
imuZ

Xup
imu

Y
Zdn
imuY

Zup
imuY

Ydn
imuY

Yup
imuY

Xdn
imuY

Xup
imu

X
Zdn
imuX

Zup
imuX

Ydn
imuX

Yup
imuX

Xdn
imuX

Xup
imu

)f(Av)f(Av)f(Av)f(Av)f(Av)f(Av
)f(Av)f(Av)f(Av)f(Av)f(Av)f(Av
)f(Av)f(Av)f(Av)f(Av)f(Av)f(Av

W

                                                                                                                                                                                    …(25)                                                                                                                                                 



El-Diasty and Pagiatakis: Calibration and Stochastic Modelling of Inertial Navigation Sensor Errors 
175 

 

method is that the least squares singularity problem is 
resolved efficiently by providing an accurate initial value 
for the inertial calibration parameters (for more details 
see Syed et al. (2007)). 
 
In the next section we discuss the different stochastic 
processes used to model the three residual biases, scale 
errors and white noise of the gyros and accelerometers 
( gbδ  abδ , gSδ , aSδ , gw  and aw ). 
 
3. Stochastic Modelling of Inertial Sensor 

Errors 
 
Various stochastic processes are well documented in Gelb 
(1974) and Priestley (1981), and their application in 
inertial navigation is well documented in Jekeli (2000), 
Grewal et al. (2007) and Rogers (2003).  Also, El-Diasty 
et al. (2007b), Nassar (2005), Flenniken et al. (2005), and 
Wall and Bevly (2006) are key papers that describe the 
practical implementation for these stochastic processes 
and show ongoing research in the area of inertial 
navigation. The following terms should be defined first 
(Gelb, 1974; Priestley, 1981): 
 
• Continuous time signals are signals that are 

described by an analytical function of time.   
• Discrete time signals are signals that have values 

only at discrete instants of time. Sampling a 
continuous-time signal generates a discrete signal.  

• Stationary stochastic process is a  process whose 
joint probability distribution does not change when 
shifted in time or space. Consequently, parameters 
such as the mean and variance, if they exist, also do 
not change over time or with position. 

• Autocorrelation function of a discrete signal is the 
expected value of the product of a random signal 
with a time-shifted version of itself. If x(t) is random 
signal then the autocorrelation equation is 

))t(x)t(x(E)(R τ+⋅=τ , where E  is the 
expectation operator and τ  is the time shift.  The 
autocorrelation function is very useful because it tells 
us the time interval over which a correlation in the 
noise exists.  

 
As mentioned earlier, four stochastic models are 
described in this note, namely: 
 
• Random constant model, 
• Random walk model, 
• Gauss-Markov model, 
• Autoregressive model 
 
In addition the Allan variance analysis and ongoing 
research on stochastic modelling are discussed in this 
note.   

3.1 Random Constant (RC) Model 
 
A random bias can be described as an unpredictable 
random quantity with a constant value through the 
following differential equation in continuous time domain 
(Jekeli, 2000): 

0x = . ( 29 ) 

In discrete time, the process is represented by the 
following equation: 
 

1kk xx −= . ( 30 ) 

The corresponding autocorrelation function )(R τ  is 
plotted as a function of time shift τ  in Fig. 2 (Gelb, 
1974): 
 

 
 

Fig. 2 Autocorrelation function of a random constant 
process. 
 
Therefore, the corresponding variance is: 
 

22
x̂ m=σ , ( 31 ) 

where m  is a constant value. So, the discrete-time 
random constant model can take the form of Eq. (30) but 
there is no noise present in this process. 
 
3.2 Random Walk (RW) Model 
 
A Random Walk (RW) process x  is a zero-mean 
Gaussian stochastic process with stationary independent 
increments i.e., in a RW process the difference 
( )1kk xx −−  is a purely random sequence kw . A RW 
can be described through the following differential 
equation in continuous time domain (Jekeli, 2000): 
 

wx = . ( 32 ) 

From this equation, it can be seen that RW can be 
generated by integrating an uncorrelated random 
sequence w. In discrete time, the process can be described 
through the following equation (Grewal et al., 2007): 
 

ττ−

)(τR

m

http://en.wikipedia.org/wiki/Stochastic_process�
http://en.wikipedia.org/wiki/Probability_distribution�
http://en.wikipedia.org/wiki/Mean�
http://en.wikipedia.org/wiki/Variance�
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k1kk wxx += − . ( 33 ) 

 
For a very large number of data samples k , the previous 
equation converges to: 
 

∑=
−

=

1k

1i
ik wx ,  ( 34 ) 

 
where the mean equals zero and the variance can be 
derived using the discrete form as follows: 
 

[ ] [ ]∑ σ==µ−=σ
=

k

1i

2
w

2
i

2
x̂

2
k

2
x kwExE

k
, ( 35 ) 

k

2
x̂2

w
k

k

σ
=σ , ( 36) 

 
where E is the expectation operator. So, the discrete-time 
RW model can take the form of Eq. (33) and the variance 
of the driven noise kw  as Eq. (36). Also, Allan variance 
analysis can be used to estimate the variance of the driven 
noise kw  (see section 3.2 for Allan variance details).  
 
3.3 Gauss-Markov Model (Shaping filter) 
 
Gauss-Markov (GM) random processes are stationary 
processes that have exponential autocorrelation functions. 
The GM process is important because it is able to 
represent a large number of physical processes with 
reasonable accuracy and has a relatively simple 
mathematical formulation (Gelb, 1974). A stationary 
Gaussian process that has an exponentially decaying 
autocorrelation is called first-order GM process. For a 
random process x with zero mean, mean squared error 

2σ , and correlation time Tc, the first-order GM model is 

described by the following continuous-time equation 
(Gelb, 1974): 
 

wx
T
1x
c

+−=  (  37 ) 

 
The autocorrelation function (see Fig. 3) of the first-order 
GM model is given by (Gelb, 1974): 
 

( ) ( ) ( )[ ] CT2etxtxER τ−σ=τ+=τ  ( 38 ) 

 
where τ  is the time shift, Tc is the correlation time, and 

2σ  is the variance at zero time shift ( 0=τ ). The most 
important characteristic of the GM process is that it can 
represent bounded uncertainty which means that any 

correlation coefficient at any time shift is less or equal the 
correlation coefficient at zero time shift ( ) ( )0RR ≤τ ) 
(Gelb, 1974). 
 
Two parameters namely, cT  (correlation time) and 2

wσ  
(driven noise variance), are required to describe a GM 
process as shown in Fig. 3. 

 
Fig. 3 The autocorrelation function of the first-order 
Gauss-Markov process.  
 
The first-order GM process in discrete time can be 
written as (Grewal et al., 2007):  
 

k1k
Tt

k wxex c += −
∆−

. ( 39 ) 

 
And the associated variance can be given by (Grewal et 
al., 2007): 
 

Ck

k

k Tt2

2
w2

x
e1 ∆−−

σ
=σ , ( 40 ) 

 

( )Ck

kk

Tt22
x

2
w e1 ∆−−σ=σ . ( 41 ) 

 
So, the discrete-time first-order GM model can be applied 
using Eq. (39) and the variance of the driven noise kw  is 
given by Eq. (41).  
 
The second-order GM process with zero mean, mean-
square error 2σ , and correlation time Tc, is described by 
the following continuous-time equation (Gelb, 1974): 
 

wXX2X 2 +⋅β−⋅β−=   (  42 ) 

where 
 

 

cT
1416.2≈β .

 
(  43 ) 

 

21σ
e

cT−cT
-τ τ 

)(R τ

2σ
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The autocorrelation function of the second-order GM 
model is given by (Gelb, 1974): 
 

( ) ( ) ( )[ ] ( ) τ⋅β−⋅τ⋅β+σ=τ+=τ e1txtxER 2
. 

                                                                          … ( 44  ) 
 
An important property of the second-order GM process is 
that the first derivative of its autocorrelation function 
equals zero at 0=τ . So, we can solve this equation to 
find the value of β  and then we can estimate the 
correlation time cT . For higher order GM-processes see 
Gelb (1974) for more details.  
 
The first-order GM process is one of the most commonly-
applied shaping filters in integrated navigation systems 
because the bounded uncertainty characteristic of GM 
process makes it the best model for slowly varying sensor 
errors such as residual bias and scale errors (Rogers, 
2003).  
 
3.4 Autoregressive Model  
 
To avoid the problem of inaccurate modelling of inertial 
sensor random errors due to inaccurate autocorrelation 
function determination, we can apply another method for 
estimating inertial sensor errors as introduced by Nassar 
(2005). Compared to a first-order GM random process, 
Autoregressive (AR) processes have more modelling 
flexibilities since they are not always restricted to only 
one parameter, and higher orders can be used (Nassar, 
2005). In many time series applications, AR processes are 
used to model (estimate) their stochastic part (Gelb, 
1974). The inertial sensor data are considered to form a 
time series that contain both systematic and stochastic 
error components, and hence AR models are used to 
describe the inertial stochastic errors. The GM process 
given by Eq. (37) is equivalent to an AR process of first-
order (Nassar, 2005; El-Diasty et al. 2007b). An AR 
process is a time series produced by a linear combination 
of past values and its structure is shown in Fig. 4.   
 

c1 pcc2

k-2k-1x x x k-p

xk
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 = Output neuron
= Input neuron

p

x
c

x

 
Fig. 4 Autoregressive (AR) structure 
 

An AR process of order p can be described by the 
following linear equation (Priestley, 1981; El-Diasty et 
al., 2007a): 
 

kik
p

1i
ik wxcx +∑= −

= ,  ( 45 ) 

 
where kx  is the process output, ikx −  are previous 
system states, and ic  are the AR model parameters. The 
AR model parameters can be estimated using least-
squares fitting (El-Diasty et al., 2007b) or can 
alternatively be estimated using Yule-Walker, covariance 
and Burg’s methods (Nassar, 2005). The variance of the 
noise component kw  (is also equivalent to the mean 
square error MSE in this case because the expected mean 
of the residual equals zero) can be estimated numerically 
from the following equation: 
 

 
where k is the size of the sample of the stationary process, 

d
kx  is the known value of the process (desired output), 

and kx̂  is the corresponding estimated output. 
 
If we have a first order AR model, then the discrete form 
will be (Priestley, 1981): 
 

k1k1k wxcx +⋅= −   ( 47 ) 

 
for which the associated variance of the noise component 

kw  can numerically be estimated from stationary data 
by Eq. (46) or it can be estimated by using the following 
equation (Priestley, 1981): 
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x

w
k

k

k
  ( 48 ) 

 
So, the discrete-time first-order AR model can take the 
form of Eq. (47) and the variance of the driven noise kw  
is given by Eq. (46) or Eq. (48). It should be noted that 
when 1c =1, the AR process becomes a RW process. The 
AR model was introduced by Nassar (2005) as an 
alternative to GM process for the modelling of the 
residual gyro and accelerometer biases.   
 

2k

1i
i

d
i

2
w )x̂x(

k
1

k
∑ −=σ
=

,  ( 46 ) 

x  = input 
x̂  = output 

pc =AR parameter 
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3.5 Allan Variance Analysis  
 
Allan variance analysis is commonly and efficiently used 
to identify and obtain the variances for most of the 
random errors (IEEE Std. 647-1995, 1998; Hou and El-
Sheimy, 2003; El-Diasty et al., 2007a). The Allan 
variance is a method of representing root mean square 
random drift error as a function of averaging times. It is 
simple to compute, much better than having a single 
RMS drift number to apply to a system error analysis, 
and relatively simple to interpret and understand. Its most 
useful application is in the identification and estimation 
of random drift coefficient in a previously formulated 
model equation. If N is the number of data points with 
sampling internal of 0t∆ , then a group of n data points 
(with 2/Nn <  can be created. Each group member is 
called a cluster T of size 0tn∆ . The Allan variance can 
be defined in terms of an output variable, calculated at 
discrete times )kt(xx 0k = . The Allan variance is 
estimated as follows: 
 

( )
( )

( )∑ +−
−

=σ
−

=
++

n2N

1k

2
knkn2k2

2 xx2x
n2NT2

1T  

                                                                            …  ( 49 ) 
 
There is a very important relationship between Allan 
variance and power spectral density (PSD) of a random 
process: 

( ) ( ) ( )
( )2

4

x
0

2

fT
fTsinfSdf4T

π
π⋅⋅∫=σ

∞
  (50) 

 
where ( )fSx  is the power spectral density (PSD) of the 
random process ( )Tx , namely the instantaneous output 
rate of the sensor. In the derivation of Eq. (50), it is 
assumed that the random process ( )Tx  is stationary.  
Eq. (50) is the equation that will be used to calculate the 
Allan variance from the PSD. The different types of 
random processes can be examined by investigating the 
Allan variance plot. The Allan variance provides a means 
of identifying various noise terms that exist in the data. 
Fig. 5 shows a typical Allan variance curve estimated 
from gyro measurements. A typical Allan variance curve 
estimated from accelerometer measurements is the same 
as from a gyro but the angle random walk and the rate 
random walk terms should be changed to velocity random 
walk and the acceleration random walk terms in the plot.  
There are four possible RW models in inertial navigation 
systems. The angle RW that describes the angular error as 
a function of time is due to the mathematical integration 
of the white noise ( gw ) of the angular rate (gyro output). 

However, the residual bias ( gb ) of the gyro can be 

modelled as rate RW process.  On the other hand, the 
velocity error as a function of time that is due to the 
mathematical integration of white noise ( aw ) of the 
linear acceleration (accelerometer output) is called 
velocity RW and the residual bias ( ab ) of the 
accelerometer can be modelled as acceleration RW 
process.  The Allan variance terms and algorithm are well 
documented in IEEE standards (1998) 
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Fig. 5 ( )Tσ  Allan variance analysis noise terms results 
(after IEEE Std. 952-1995, 1998) 
 
It should be noted that different noise terms appear in 
different regions of T. This property permits easy 
identification of various random processes that exist in 
the data. It is well known that the angular and velocity 
random walk are the dominant noise terms in low cost 
inertial sensors and therefore we provide in this note how 
the angle RW (in case of gyros) or velocity RW (in case 
of accelerometer) can be identified from the Allan plots.  
The angular random walk process can be identified at 
T=1h and with a straight line of slope -1/2 as shown in 
Fig. 5. The noise PSD rate is represented by (IEEE Std. 
647-1995, 1998): 
 

( ) 2
ARWx fS σ= ,  (51) 

 

where ARWσ  is the angular random walk coefficient 
from Fig. 5. Substituting Eq. (51) in Eq. (50) and 
performing the integration we get: 
 

( )
T

T
2
ARW2 σ

=σ .  (52) 
 

 
The same estimation can be made to find the velocity 
random walk from process from the typical Allan 
variance curve of the accelerometer. The identification of 
the remaining various random processes that exist in the 
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data can easily be derived using the same methodology 
given that the slope of Allan variance is well known for 
any individual random process under investigation as 
shown in Fig. 5.  
 
3.6 Ongoing Research on Stochastic Modelling 
 
The most commonly used process in stochastic modelling 
of inertial sensor errors is the first-order Gauss-Markov 
process, while recently, the use of Autoregressive (AR) 
modelling methods were tested (Nassar, 2005; Park and 
Gao, 2002). Nassar (2005) implemented the modelling of 
the inertial sensor gyro and accelerometer residual biases 
(three gyros and three accelerometers) using AR 
processes of different orders and showed that the 
accuracy of position is improved by almost 50% for 
second-order AR model and 55% for third-order AR 
model when compared with the first-order GM and AR 
model results (Nassar, 2005). However, the number of 
INS sensor error states is increased from six states to 6×2 
for second order AR model or 6×3 for third order AR 
model. In addition, the implementation of the Kalman 
filter with large number of states becomes numerically 
intense and complicates the model excessively (see 
Nassar, 2005 for more details).  
 
Most recently El-Diasty et al. (2007b) proposed nonlinear 
stochastic model using wavelet networks. They 
introduced a new nonlinear stochastic model for inertial 
sensor residual biases and verified its performance in 
comparison with first order GM and AR. It was found 
that the wavelet network-based nonlinear stochastic 
process can be used to model the highly nonlinear time-
varying inertial sensor error. A kinematic test with nine 
artificial GPS outages of 30s and 60s each showed that 
the first-order GM and AR stochastic processes give 
similar results, which agree with the results obtained by 
Nassar (2005). In addition, the first-order WN-based 
nonlinear stochastic model gives superior results to the 
first-order GM and AR processes with an overall 
improvement of 30% in the 3D position solution for 30s 
and 60s GPS outages (see El-Diasty et al., 2007b for 
more details). To this end, in the next section we discuss 
the implementation of a stochastic model in the INS/GPS 
navigation filter.  
 
Also, it is worth noting that for low cost inertial sensors, 
the residual biases are temperature-dependent as 
indicated by El-Diasty et al. (2007a). Therefore, it is 
strongly recommended to develop the stochastic model 
for residual biases at different-temperature points.   
 
4. Stochastic Model Implementation in Loosely-

coupled INS/GPS Integration 
 
Methods in which GPS and INS data are integrated differ 
mostly in the type of data that are shared between the 

systems. In general however, the following four 
approaches are the most common (Jekeli, 2000): 
uncoupled integration, loosely-coupled integration, tight 
integration, and deep integration. The loosely-coupled 
and tightly-coupled integration strategies are the most 
common in practice. In this note we discuss the 
implementation of the stochastic models in a loosely-
coupled integration scheme. In the loosely-coupled 
integration strategy, position and velocity are used as 
observations to an INS-only filter. The position and 
velocity estimates are obtained from a GPS-only filter. 
This way, the integration approach uses a cascading 
scheme in which the raw GPS measurements are first 
processed in a GPS-only filter before they get passed 
along to aid the INS-only filter (Jekeli, 2000). The inertial 
navigation error state behaviour is obtained by the 
perturbation of the INS mechanization equations. This 
perturbation analysis is well documented in a number of 
publications, such as Jekeli (2000), Titterton (2004), and 
Grewal et al. (2007). The error model comprising errors 
in INS navigation states (i.e., three residual positions pδ , 
three residual velocities vδ , and three residual attitudes 
in Euler angles Aδ ) as well as the INS sensor errors (i.e., 
three gyro residual biases gbδ , three residual scale errors 

gsδ , three accelerometer residual biases abδ , and three 

residual scale errors asδ ) are used. The system of 
discrete linearized first-order differential equations for 
inertial system error model and GPS measurements is 
used to provide complete navigation solution (positions, 
velocities and attitude) using INS/GPS integration in 
standard loosely-coupled mode. The state vector for 
loosely-coupled INS/GPS error model can be represented 
by (if we have 21 states): 
 

k1k1kk wxΦx +⋅= −− , ( 53 ) 
 

T]

[

)31(a)31(g)31(a)31(g

)31()31()31(

s,s,b,b

,A,v,p

××××

×××

δδδδ

δδδ=x where,
, 

which contains two parts separated by vertical line: The 
first part is called the inertial dynamic model which 
contains the three position, velocity and attitude errors 
( )31()31( v,p ×× δδ and )31(A ×δ ), which are derived from 
the perturbation of the INS mechanization equations (see 
Jekeli, 2000 for this perturbation analysis). The second 
part is called the stochastic model, which contains the 
three gyro and accelerometer residual biases and scale 
errors (

)31(g)31(a)31(g s,b,b
×××

δδδ and )(as 31×δ ). 1k−Φ  

is the transition matrix which contains the parameters 
from the dynamic and stochastic model, and 
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T]w

,w,w,w,w,w[

)31(Sa

)31(Sg)31(ba)31(bg)31(A)31(v

×

××××δ×δ=kw

 
is the vector comprising the noise components which 
follow the standard normal distribution 

)QN(0,~w kk   where kQ  is the covariance matrix 
with a diagonal form and includes the following 
variances in a discrete form: 
 

T
)31(

2
wsa)31(

2
wsg)31(

2
wba

)31(
2
wbg)31(

2
Aw)31(

2
vw

],,

,,,[diagonal

×××

××δ×δ

σσσ

σσσ=kQ
. 

 
The correct identification of the stochastic processes 
determined above for specific inertial sensors is of major 
importance in the performance of an integrated model 
and especially in the ability of a pure inertial solution to 
bridge data outages. In this note we give an example of 
how we can extract the stochastic model parameters from 
the specification sheet of Digital Quartz Inertial (DQI-
100) sensor from BEI Systron Donner Inertial Division 
(BEI, 2004). The DQI is a low cost tactical grade inertial 
measurement unit based on quartz gyro and 
accelerometer technology (BEI, 2004).  
 
The first set of parameters to be retrieved comprises the 
uncertainties ( )31(vw ×δσ  and )31(Aw ×δσ  ) of the three 

velocity and attitude error model, respectively. The 
processes in this case are three angle random walk 
(ARW) and three velocity random walk (VRW). For 
simplicity, the ARW and VRW variances are obtained 
from the specification sheet of DQI-100 (BEI, 2004). 
Usually, the power densities of ARW and VRW are given 
in the specification sheet and when we have a dynamic 
system in the discrete form the associated variances can 
be estimated as follows:  
 
(1) From DQI-100 specification sheet we know that 

Hz/hdeg/10.2hdeg/035.0ARW == , then for 
100 Hz bandwidth (sampling rate of 0.01 sample/sec), the 
attitude error noise uncertainty equal: 
 hdeg/21hz100Hz/hdeg/1.2Aw =×=σ δ  .  
(2) Again from DQI-100 specification sheet we know that 

Hz/60VRW gµ=  (where g  is the local gravity), 
then the velocity noise uncertainty equal: 

gg µ=×µ=σ δ 600Hz100Hz/60vw .  
 
Now, we investigate the three gyro and accelerometer 
residual biases (

)31(gb
×

δ  and )31(ab ×δ ). Traditionally, the 

residual biases are modelled as Gauss-Markov (GM) 

processes (Rogers, 2003). The autocorrelation function of 
the stationary raw data is used to determine the 
parameters of the Gauss-Markov models. It must be noted 
however that, prior to the calculation of the 
autocorrelation function, the inertial sensor data should 
be de-noised using a low pass filter or wavelet or neural 
network de-noising. The parameters are derived for each 
sensor individually. Table 1 shows the correlation time 

bT  (subscript b means bias) and uncertainty for the 
residual bias errors from the DQI-100 inertial unit 
specification sheet (BEI, 2004). Noise uncertainty and 
correlation time are illustrated in the table. 
 

Table 1 First order GM process parameters 
 

Stochastic 
model 

Correlation 
Time bT  

Uncertainty 
σ  

Gyros 
residual bias 

gbδ  

60 s 3 deg/h 

Acc residual 
bias abδ  

60 s gµ200  

 
If we consider that the sampling interval is 1kt −∆  then 
the GM model for the residual biases can be written as 
follows: 
 

1k1k
60t

k wbeb 1k
−−

∆− +δ=δ − . ( 54 ) 
 
We should note that the sampling interval 1kt −∆  is not 
exactly constant due to the INS/GPS acquisition and 
synchronization issues. 
 
Finally, we investigate the three residual scale errors for 
gyros and accelerometers (

)31(gs
×

δ and )31(as ×δ ). The 

scale error is mostly deterministic in nature and only 
suffers a small residual error due to temperature variation 
and nonlinearity. It is impossible from the practical point 
of view, and in static mode, to differentiate the effect of 
residual scale error and residual bias terms. As such, the 
residual scale error is modelled as a random constant 
(RC) (Cannon, 1991). An alternative approach is to 
model the residual scale error using GM process (Rogers, 
2003). In this case, the correlation time sT  (subscript s 
means scale) and the noise uncertainty will be tuned in 
the navigation filter to provide the best estimation. It 
should be noted that the navigation solution in this case 
will be sub-optimal because the residual scale error 
parameters used are based on the tuning method and not 
on a rigorous min/max method.    
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In summary, if we model the residual bias, and scale 
errors as GM processes, the stochastic model takes the 
following form based on the example given in this 
section: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where 60tz
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x
ba

z
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1kecccccc −∆−====== , 

the residual bias error correlation time equals 60s as 
shown in Table 1 and 

s1k Ttz
sa

y
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x
sa

z
sg

y
sg

x
sg ecccccc −∆−======  where 

the residual scale error correlation Ts is tuned (as 
mentioned before) to the navigation filter to provide the 
best estimation for positions, velocities and attitudes. The 
example given here is based on the correlation time being 
the same for all residual bias errors because we simply 
used the correlation time from the inertial sensor 
specification sheet. However, in practice we use static 
test to collect the three gyro and three accelerometer 
measurements from the inertial sensors. From the 
autocorrelation sequence we can estimate three different 
correlation times for the three gyros residual errors and 
three different correlation times for the three 
accelerometers residual biases.  
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