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Abstract 
 
In this paper, the problems of three carrier phase 
ambiguity resolution (TCAR) and position estimation 
(PE) are generalised as real time GNSS data processing 
problems for a continuously observing network on large 
scale. In order to describe these problems, a general linear 
equation system is presented to uniform various 
geometry-free, geometry-based and geometry-constrained 
TCAR models, along with state transition questions 
between observation times. With this general 
formulation, generalised TCAR solutions are given to 
cover different real time GNSS data processing scenarios, 
and various simplified integer solutions, such as 
geometry-free rounding and geometry-based LAMBDA 
solutions with single and multiple -epoch measurements. 
In fact, various ambiguity resolution (AR) solutions differ 
in the floating ambiguity estimation and integer 
ambiguity search processes, but their theoretical 
equivalence remains under the same observational 
systems models and statistical assumptions. TCAR 
performance benefits as outlined from the data analyses 
in some recent literatures are reviewed, showing 
profound implications for the future GNSS development 
from both technology and application perspectives. 
 
Keywords: Three carrier phase ambiguity resolution, real 
time GNSS data processing, Constrained Kalman filter. 
_____________________________________________ 
 
1. Generalised AR Problems  
 
Carrier phase ambiguity resolution (AR) consists of both 
float ambiguity estimation and integer ambiguity 
determination process in GNSS data processing. AR is 
one of the key enabling techniques for various precise 
GNSS applications using carrier phase measurements, 
although different AR models and methods are used in 
various real time and post-processing positioning 
problems. However, the dual-frequency based instant AR 
are basically restricted to real time kinematic (RTK) 
positioning services over a short baseline or local scale 
network, due to the effects of various distance-dependent 

biases. For a long baseline or regional to global network, 
AR or partial ambiguity resolution (PAR) is possible over 
a period of observation or longer data arcs, to provide 
precise data analysis solutions in near real time or post 
processing modes. An example for the real time regional 
and global differential positioning services is the 
OmniStar High-Performance (HP) services where 
position estimation (PE) is based on the floating 
ambiguity estimation of phase measurements; but the 
convergent time for decimetre accuracy takes up to tens 
of minutes.  
 
In the context of future GNSS systems, three or multiple 
carrier ambiguity resolution (TCAR/MCAR) can 
potentially bring various existing GNSS services to a new 
level of performance  at the local, regional and global 
scales (Feng & Rizos 2005; Hatch 2006). This is because 
with triple frequency code and phase signals accessible 
by civilian users, various frequency combinations will 
allow wider wide-lane combinations resulting in 
successful ambiguity resolution over much longer 
baselines. This result has many implications. First of all, 
in the network-RTK for centimetre positioning services, 
the inter-station distances would be extended from 
several tens to hundreds of kilometres. Feng and Li 
(2008a) demonstrated that use of triple frequency allows 
the inter-station distances to be roughly doubled in the 
network RTK services with respect to the dual-frequency 
based reference station spacing. Secondly, global real 
time decimetre positioning is possible. Comparing to the 
dual-frequency based differential positioning; a major 
benefit of using the third frequency signals is the 
reduction of convergence time at the 20 cm level RMS 
accuracy from a few tens of minutes to a few minutes. 
Thirdly, with ambiguity-fixed double differenced 
measurements over a globally distributed Continuously 
Operating Reference Stations (CORS), the scientific 
GNSS solutions, such as precise orbit determination 
(POD) solutions, can then be updated in real time or more 
frequently. 
 
Therefore, in this research effort, the problems of three 
carrier phase ambiguity resolution (TCAR) and position 
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estimation (PE) are generalised as real time GNSS data 
processing problems for a continuously observing 
network of any large scales. Table 1 gives the summary 
of local, regional and global scale services being 
currently or potentially enabled by dual-frequency and 
triple-frequency carrier phase ambiguity resolutions. The 
shaded areas show the new services that TCAR 
technology can enable while the non-shaded areas 
indicate the current services that dual-frequency AR and 
PE can enable. In the triple frequency scenarios, AR and 
PE problems can be generalised as GNSS real time data 
processing problems using continuous observations from 
a network of continuously operating receivers distributed 
over any scales, i.e. local, regional and global scales.  
 

Based on the generalisation of AR and PE problems, the 
rest of the paper is organised as follows. Section 2 
presents a general formation of TCAR models, based on 
(i) geometry-free models; (ii) geometry-based models; 
and (iii) geometry-constrained models used along with 
geometry-based and geometry-free models and state 
transition equations for both real-value state parameters 
and floating ambiguity parameters. Section 3 provides all 
the estimation equations for the generalised models, 
which can cover the cases of various specific AR and PE 
problems and models. Some important long-distance AR 
performance benefits and impacts on wide area GNSS 
technology and applications will be outlined in Section 4. 
In the final section, the major findings of the paper are 
summarised.   

 
Table 1 Summary of local, regional and global scale GNSS services, enabled by dual-frequency and triple frequency 
carrier phase ambiguity resolutions 

Observation 
Local scale: in terms of 
inter-station distance of  
typically up to 100 km 

Regional scale in term of 
inter-station distance of 
tens to hundreds of km 

Global scale: in terms of 
inter-station distance of  

hundreds to thousands of 
km 

Single-epoch 
observations  
(eg 1 second) 

Single-base 
RTK 

(<20km) 

Network-
RTK 

TCAR-based 
single-base 

RTK-
decimetre 

TCAR-based 
network-RTK, 

-centimetre 

Global 
differential 
positioning 

TCAR-based 
global RTK 
Decimetre 

Multiple-epoch 
(observations 

(eg a few to tens 
of minutes) 

Single-base 
RTK 

(<20km) 

Network-
RTK 

TCAR-based  
single-base 

RTK-
centimetre 

TCAR-based  
network-RTK 

-centimetre 

Precise Point 
Positioning-
kinematic 

TCAR-based 
global-RTK 
centimetre 

Long arc 
observations 

(hours to days) 

Baseline/network relative 
positioning-static 

Baseline relative positioning and 
network-based PE and scientific 

applications 

Precise orbit determination 
(POD) and scientific services 

Continuous 
observations 

Generalised TCAR and PE 
for improved RTK services 

Generalised TCAR and PE for 
real time GNSS services 

Generalised TCAR for real 
time POD, PE, ZTD and 

scientific services 
 
2. General Formation of TCAR Problems 
 
2.1 General models 
 
We begin with the observation equations for the double-
differenced (DD) phase and code measurements in 
meters, 

ii orb tro i i iI N ΔφΔφ = Δρ + Δδ + Δδ − Δδ − λ Δ + ε                (1) 

and 

ii orb tro i PP I ΔΔ = Δρ + Δδ + Δδ + Δδ + ε                  (2) 

In Eqs. (1) and (2), the symbol “Δ” represents the DD 
operation to the term immediately right; iΔφ  is the DD 
phase measurements at the ith frequency in meters, and 
ΔPi is the DD code measurements at the ith frequency; 
the symbol Δ  is the DD geometric distance, and Δδorb, 
Δ tro and Δ Ii are the DD satellite orbital error, DD 
tropospheric delay and DD ionospheric biases 
respectively, in meters. 
 

 
In general, one can assume that each of the terms of the 
right-hand side of (1-2) is a function of one set of 
unknown state parameters or vectors, alongside the 
stochastic assumptions for the last term of the noise. As a 
result, (1) and (2) can be written as 

( ) ( ) ( )
( ) ( ) i

i 1 orb 2 tro 3

i 4 i 5          I Δφ

Δφ = Δρ + Δδ + Δδ

− Δδ − Λ + ε

x x x

x x
                   (3) 

( ) ( ) ( ) ( ) ii 1 orb 2 tro 3 i 4 PP I ΔΔ = Δρ + Δδ + Δδ + Δδ + εx x x x   

(4) 
Given the number of rover receivers/baselines and 
number of satellites in view for (3) and (4) at each epoch, 
x1 is the user-specific state vector, x2 is the GNSS 
satellite-specific state vector for all satellites in view; x3 
is the station-specific tropospheric vector; x4 is the 2D or 
3D model parameters of DD ionospheric bias at the L1 
carrier; x5 is the wavelength-specific ambiguity parameter 
vector of the DD phase measurements. It is assumed that 
independence between these parameters xi (i=1,2,…,5) is 
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maintained to ensure the solvability of (3) and (4). Here, 
it is emphasized that the ambiguity and ionosphere delay 
are dependent if a DD ionospheric parameter is set 
directly for each line of sight. For independent 
parameterisation under the multiple frequency cases 
between DD ambiguities and ionospheric biases, we 
notice the result by Odijk (2003). Basically, the 
ionosphere-free (IF) measurements are essentially 
employed for precise positioning and the actual 
ionospheric estimation cannot be achieved. Instead, it is 
suggested that the 2D or 3D ionospheric model 
parameters could be estimated instead to recover the 
actual ionospheric bias in the generalized model.  
 
Setting the state vector, 

0
i ii ,   i=1,2, ,5= + δx x x                        (5) 

with 0
5 0=x , one can obtain the computed DD geometric 

range 

( ) ( ) ( ) ( )0 0 0 00
orb tro i1 2 3 4IΔρ = Δρ + Δδ + Δδ − Δδx x x x     (6) 

which is the same for all phase measurements and for all 
code measurements except the opposite sign for the 
ionospheric bias. 
 
For convenience, we introduce the following vectors or 
variables, 

( )
( )
( )

( )

T
1 2 5

T
1 2 5

T
1 2 5

1 2 5

P P P

N N N

diag

⎫= Δφ Δφ Δφ
⎪
⎪= Δ Δ Δ ⎪
⎬
⎪= Δ Δ Δ
⎪

= λ λ λ ⎪⎭

Φ

P

N

Λ

                   (7) 

( ) ( )

( )

1 2 5i, j,k
1 2 5

(i, j,k)

1
i f j f k f

i f j f k f

i j k

⎫= ⋅ ⋅ ⋅ ⎪⋅ + ⋅ + ⋅ ⎬
⎪= ⎭

Z

z

   (8) 

and  

(i, j,k) (i,. j,k)

1 2 5
(i, j,k)

2 5 1 5 1 2

N

i j k

Δ = ⎫
⎪

λ λ λ ⎬λ = ⎪⋅λ λ + ⋅λ λ + ⋅λ λ ⎭

z N

               (9) 

= +Φ Φ ΛN                               (10) 
In what follows, we examine the general expressions of 
various TCAR models. 
 
2.2 Geometry-based TCAR models 
 
Any geometry-based observables can be alternatively 
represented by the following linear transformations, 

(i, j,k) (i, j,k)

(i, j,k) (i, j,k)

PΔ = ⎫
⎬Δφ = ⎭

Z P

Z Φ
                         (11) 

As shown in Feng (2008) using the (11) instead of (1) 
and (2) allows for easier and more reliable AR in 
combined or separate steps, including the determination 
of the extra-widelane (EWL) ambiguity ΔN(0,1,-1) with the 

geometry-free model, see e.g, Eq. (44), the second EWL 
integer ambiguity ΔN(1,-6,5) with geometry-based models 
and the third ambiguity ΔN(1,0,0) with two phase 
measurements.  
 
Any ionosphere-free observables can also be expressed as 
linear transformation. For instance, code and phase IF 
measurements in the GPS L1 and L2 frequency case are 
given as 

IF (77, 60,0)

IF (77, 60,0)

P −

−

Δ = ⎫
⎬Δφ = ⎭

Z P

Z Φ
                       (12) 

The DD phase ionospheric delay with respect to the L1 
carrier can be estimated as 

( )
2
2

1 (1,0,0) (0,1,0)
2 2

1 2

f
I

f f
Δδ = −

−
Z Z Φ                (13a) 

or 

( )2 5
1 (1,0, 1) (1, 1,0)

1 2 5

f f
I

f (f f )
− −Δδ = −

−
Z Z Φ            (13b) 

 
2.3 Geometry-free TCAR models 
 
The general geometry-free TCAR models as given in 
Feng and Rizos (2009) can be formed as the linear 
combinations between virtual code and phase 
measurements, 

[ ](l,m,n) (i, j,k) (l,m,n) (i, j,k)P
⎡ ⎤

Δ − Δφ = − ⎢ ⎥
⎣ ⎦

P
Z Z

Φ
          (14) 

and between two phase measurements as, 

(l,m,n) (i, j,k) (l,m,n) (l,m,n) (l,m,n) (i, j,k)NΔφ − Δφ = + λ −Z Φ Z Φ     

(15) 
where the ambiguity ΔN(l,m,n) has been primarily known;  
the subscripts (l,m,n) and (i,j,k) are used to represent two 
different integer sets in the formulae (14) and (15).  
 
In both (14) and (15), the geometry-term, orbital error 
and tropospheric error or their related state parameters are 
cancelled; the effect of the ionospheric term can be 
reduced, thus allowing for direct and reliable estimation 
of two ambiguities. But it would take a much longer time 
span of averaging to correctly fix the third integer 
parameter ΔN(i,j,k) due to the effects of enlarged phase 
noises in (15). 
 
2.4 Geometric constraints 
 
The equations (3) and (4) form a general observational 
model for a network of receivers with a certain number of 
satellites commonly in view. For a single epoch or over a 
short-time span, the (3) and (4) is an under-determined or 
severely ill-conditioned linear equation. To resolve the 
ambiguity parameters in (3) over a baseline or network 
with a short-observational span, the additional prior 
knowledge for some parameters should be introduced as 
much as possible. A general strategy is to impose the 
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state constraint equations to the ith set of parameters xi 
as, 

i i iδ =A x w                                       (16) 
where Ai is the r-by-u coefficient matrix with u-by-1 state 
vector xi, wi is the r-by-1 constant vector. The different 
constraint is characterized by its coefficient matrix Ai and 
constant vector wi. For instance, one can usually assume 
the use of the precise GNSS orbits solutions or assume a 
sufficient short baseline, the satellite specific parameters 
x2 is removed. Accordingly, matrix A2 and vector w2 in 
constraint equations are specialized as; 

2 2    = =A I w 0,                               (17) 
In the network-based process, all the station coordinates 
are precisely known, and it implies that the constraint 
equations introduced for x1 are: 

1 1    = =A I w 0,                               (18) 
More types of geometry constraints may include baseline 
length constraints, or horizontal and vertical coordinate 
component constraints respectively, as found in (Li & 
Shen 2009). 
 
In addition, Li and Shen (2009) also gave a general 
constraint model for integer ambiguities, namely, for the 
parameter x5. For example, the constraint amongst integer 
ambiguities was given based on the fact there are just 
three DD ambiguities are independent in the case of 
single baseline with epochwise solution. In this situation, 
the constraint equations can be generally formulized as, 

1 1 2 2
55 5 5 5+ =A x A x w                           (19) 

where 1
5x  includes three ambiguities and 2

5x  the rest ones. 
For the detailed information about coefficient matrix and 
constant vector, one is referred to Li and Shen (2009). 
 
To sum up, the equations (3-4) and (16) give a complete 
and general formation of TCAR models for single or 
multiple epochs over which all the parameters are 
considered remaining unchanged. Any geometry-free and 
geometry-based TCAR problems can be derived from 
linear transformations of these fundamental code and 
phase observables for all the DD pairs and/or different 
constraint equations (16).  
 
2.5 Parameterisations and linearization 
 
For the convenient expression of the following context, 
we separate the parameters into two categories xa and xb, 
and all real parameters are classified into xa and all 
integer parameters (namely, ambiguities) into xb. Without 
loss of generality, it is assumed that independent 
parameterisation of the (3) and (4) are achievable. 
Performing linearisation of the equation system of (3), (4) 
and (16) with respect to the nominal value of all 
parameters in (5) leads to the overall linear observation 
equations and statistical model for the noise term, 

( ) ( )
a b

E , cov

δ δ ⎫⎪
⎬
⎪⎭ε

L = A x + B x + ε

ε = 0 ε = Q
                  (20) 

where the components of the vector L. If for exemplar 
purposes one considers the user baseline x1, tropospheric 
and ionospheric parameters x3 and x4 only, the matrices A 
and B are expressed as for each satellite-receiver DD pair 
without are: 

0
1

0
2

0
5

0
1

0
2

0
5

P

P

P

Δ − Δρ⎛ ⎞
⎜ ⎟Δ − Δρ⎜ ⎟
⎜ ⎟Δ − Δρ
⎜ ⎟

Δφ − Δρ⎜ ⎟
⎜ ⎟Δφ − Δρ⎜ ⎟⎜ ⎟Δφ − Δρ⎝ ⎠

L = ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

5
2

5
2

14321

5
2
2

2
14321

54321

5
2
5

2
14321

5
2
2

2
14321

54321

af/faaaa

af/faaaa

aaaaa

af/faaaa

af/faaaa

aaaaa

A
, 

1

2

5

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

λ⎜ ⎟
⎜ ⎟λ⎜ ⎟⎜ ⎟λ⎝ ⎠

B = , 

1

2

5

1

2

5

P

P

P

φ

φ

φ

Δε⎛ ⎞
⎜ ⎟Δε⎜ ⎟
⎜ ⎟Δε
⎜ ⎟

Δε⎜ ⎟
⎜ ⎟Δε⎜ ⎟⎜ ⎟Δε⎝ ⎠

ε = ; 

where ai are the partial derivation with respect to the 
initial values of the state parameter vector x1, x3 and x4 as 
specified for (3) and (4): 

000 xx3xx2xx1 |
z

a,|
y

a,|
x

a
=== ∂

ρΔ∂=
∂

ρΔ∂=
∂

ρΔ∂= ,  

)mm(|a qp

xx
3

4 0 −=
∂

ρΔ=
=x

, 1|a 0xx
4

5 −=
∂

ρΔ=
=x

 

where x3 is a relative ZTD parameter for a single 
baseline; mq and mp are Niell’s wet mapping function 
(Niell 1996) for satellite p and q. For example, mp is 
expressed as: 

( )

( )

1
1 1

sin
sin sin

p

p

p p

d

e g
m

d

e g
θ

θ θ

+
+ +

=
+

+ +

 

where θp is the average elevation angles of the two 
stations for satellites p; d, e, g are the coefficients and 
interpolated from tabular data, see e.g., Leick (2004). 
 

Formation of the variance matrix εQ is naturally based on 

variance-covariance propagation from the original code 
and phase vectors.  
 
The integer state vector xb is equal to the integer vector 
x5. Therefore, the alternative formulation of constraint 
equations (16) can be separately expressed as, 

a a a

b b b

δ = ⎫
⎬δ = ⎭

C x w

C x w
                                (21) 
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There are a total of up to ( )6r s 1× −  DD measurements 

for each epoch and a network of (r+1) receivers and s 
satellites in view, using the same notations. 
 
2.6 State transition equations 
 
We now consider the more general case where the state 
vectors may vary from time to time over the whole 
observation period and the information of previous 
epochs can be accumulatively used to update the current 
real-valued states and floating solutions of the 
ambiguities. To reflect the state dynamics, we rewrite the 
Eq(20) with time index, k for tk: 

( ) ( ) ( ) ( ) ( )a bk k k k kδ δL = A x + B x + ε              (22) 

then introduce the state equations for real-valued state 
vector δxa, 

( ) ( ) ( ) ( )a a ak k k 1 k 1 k 1δ = − δ − + −,x Ψ x u         (23a) 

But the state equations for the integer state vector δxb is 
applicable only for transition of the floating ambiguity 
solutions without a dynamic noise term, 

( ) ( ) ( )b b bk k k 1 k 1δ = − δ −,x Ψ x                (23b) 

In Eqs.(23a, b), ( )a k k 1−,Ψ  and ( )b k k 1−,Ψ  are known 

as state transition matrices for propagating the prior state 
into the current one; k denotes the time epoch tk; u is the 
dynamic noise vectors of the state xa. The stochastic 
statistic quantities for the observation vector ε(k) in (22) 
and u(k-1) in (23a) are specified as follows, 

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

k

k

E k cov k

E k cov k

⎫= = ⎪
⎬

= = ⎪⎭

,

,

ε

u

ε 0 ε Q

u 0 u Q
                (24) 

Now we suppose that the state constraint equations 
applicable to the current epoch can be added as follows, 

( ) ( )
( ) ( )

a a a

b b b

k k

k k

δ = ⎫⎪
⎬

δ = ⎪⎭

C x w

C x w
                       (25) 

Eqs.(22-25) represent the general formulation of TCAR 
models, considering both state constraints and state 
dynamics or time variations of state vectors. Comments 
about state transitions equations for different state vectors 
are made in order: 
  In the traditional kinematic positioning case where 

the user states are independent from epoch to epoch, 
the user state vector x1 is a 3×1 positional vector for 
each baseline. For network-based data analysis, the 
user state vector should comprise a 6×1 positional 
and velocity vector for each station or baseline, in 
order to consider the effects of station variations over 
long distances. 

  The satellite state vector x2 is considered only in the 
regional or global network case. The state parameters 
of each satellite may include 3 positional parameters 
such along-track, radius and across-track components 
for short-arc; 6 orbital elements or 9 to 15 orbital and 
physical parameters, with the choices depending on 

the network scale, the filter methods and treatment of 
satellite dynamics, referring to the common 
strategies in GPS precise orbital determination 
systems such as Bernese, GAMIT software systems. 

  The zenith tropospheric delay (ZTD) state vector x3 
may contain one vertical component and/or two 
gradient parameters for each station or relative ZTD 
for a baseline as shown in previously, depending on 
the scale of the network or baseline. In general, a 
random walk model may be used to propagate these 
state parameters from one epoch to another. 
However,  

  The initial state vector for the DD ionospheric state 
vector x4 is estimable with (13a) or (13b), which may 
be propagated with a polynomial function from 
epoch to epoch (Feng and Rizos, 2009). 

  The transition matrix for the ambiguity vector x5 is 
used to transit DD ambiguities from one set of DD 
matches to another, if there are any changes such as 
reference stations or satellites. Otherwise, the 
transition matrix would remain as an identity matrix. 

 
The user state dynamic noise terms in general may be 
obtainable from statistics knowledge and experiences, 
although a conservative treatment, such setting them to 
zeros, may be applied in most of computational 
situations. 
 
3 Generalised TCAR Solutions 
 
3.1 Generalised TCAR equations 
 
For the generalised observational equations (22), state 
equations (23) and state constraint equations (25), the 
standard Kalman filter has to be modified to incorporate 
the state constraints in the filter, which is called 
constrained Kalman filter or Kalman filter with state 
constraints in literatures for control theory and 
applications. There are many examples of state-
constrained systems in engineering applications, 
including camera tracking (Julier, et al, 2007), fault 
diagnosis (Simon, et al, 2006), vision-based systems 
(Porrill, 1988), target tracking (Wang et al, 2002], 
robotics (Spong, et al, 2005). The number of algorithms 
for constrained state estimation has been overwhelming, 
depending how the problem is viewed from different 
perspectives. A linear relationship between states implies 
a reduction of the state dimension, for instance, without 
considering satellite orbits states. Constrained Kalman 
Filtering can be viewed as a constrained likelihood 
maximisation problem or a constrained least squares, thus 
the method is called projection approach (Simon, et al, 
2002; Teixeira et al, 2009). Therefore, we give the 
generalised TCAR solutions following the constraint 
least-square estimation, comprising 4 steps as follows.  
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Step 1: Prediction of the state estimator 
Given an estimate of the state vector ( )k 1ˆδ −x  at the (k-

1)th epoch, the state vector at any later time tk can be 
predicted with use of the transition matrix. This predicted 
estimator of ( )kδx  here denoted ( )kδx  is given by, 

( ) ( ) ( )
( ) ( ) ( )

a a a

b b b

k k k 1 k 1

k k k 1 k 1

ˆ,

ˆ,

δ = − δ − ⎫⎪
⎬

δ = − δ − ⎪⎭

x Ψ x

x Ψ x




                      (26) 

Similarly the prediction of the covariance matrix of the 
predicted estimator of ( )kδx  is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

a a

b b

ab abab

T
a ak k 1 k 1

T
bk k 1 b

T T
ak k 1 bk

k k 1 k k 1

k k 1 k k 1

k k 1 k k 1

, ,

, ,

, ,

δ δ − −

δ δ −

δ δ −δ

⎫= − − +
⎪⎪= − − ⎬
⎪= = − − ⎪⎭

x x U

x x

x xx

Q Ψ Q Ψ Q

Q Ψ Q Ψ

Q Q Ψ Q Ψ

 

 

 

    (27) 

 
Referring to the definition of the measurement epoch in 
Section 2, we must notice that the time intervals between 
epoch tk and tk-1 can be different in different data analysis 
problems, such as 1 second in real time kinematic 
positioning and 5 minutes in precise orbit determination. 
In general, we can assume that L(k) contains all the 
measurements over the interval propagated to the time tk 
via the state transition matrix. 
 
Step 2: Standard Kalman filter solutions 
Given the observation L(k) at the time tk with associated 
observational covariance matrix ( )kεQ , the standard filter 

estimates of the state vector ( )kδx  with considering the 

predicted state estimator ( )kδx  is obtained from the 

following equations, 
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Eq (29) is also the variance and covariance matrix of the 
standard filter solution (28). 
 
Step 3: Constrained Kalman Filter Solutions 
The constrained filtering is to project the unconstrained 
estimate of the Kalman filter )k(x̂δ  onto the constraint 

surface. The constrained estimate can therefore be 
obtained by satisfying the following criterion: 

min)x̂x(G)x̂x( aa
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Such that  
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The constrained a priori estimate is based on the 
unconstrained estimate so that the constrained filter is 
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The covariance matrix is then expressed as: 
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If the constrained a priori estimate is based on the 
constrained estimate then the time update (26) should be 
rewritten as [14]  

)1k(x)1k,k()k(x~
)1k(x)1k,k()k(x~

bbb

aaa

−δ−Ψ=δ
−δ−Ψ=δ




  (34) 

However, if the same state constraints for each epoch, the 
time update (34) is not suggested. 
 
Step 4: Integer ambiguity search 
Step 3 finally results in the float solution for the integer 
state vector ( )b kˆδx  in (32) and the covariance matrix 

(33). The integer least squares criterion is now used for 
integer ambiguity search due to the ambiguity property of 
discrete as, 

( ) ( ) ( )
b

T 1
b bkmin: ˆˆ ˆ−

δΦ = − δ − δxz
z x Q z x                 (35) 

In the ambiguity search procedure, application of the 
constraint equation amongst the ambiguities will shrink 
the volume of search ellipsoid and then improve the 
integer search efficiency. Referring to Li and Shen 
(2007), if the constraint equations (19) are used, we can 
transform the search of x5 into 1

5x , the search dimension is 
reduced to 3 for whatever the dimension of x5 would be. 
In addition, they introduced the constraint equations 
amongst the ambiguities at the different frequencies as 
well to enhance the search speed. As far as the search 
algorithm is concerned, we refer to the  LAMBDA (least 
squares ambiguity decorrelation adjustment) method of 
Teunissen (1994) which basically employs a 
decorrelation technique to minimize the correlation of 
ambiguities has been commonly used for AR with single 
or dual frequency GPS data in static or kinematic 
positioning scenarios. 
 
3.2 Simplified TCAR solutions 
Generalisation does not necessarily make the problems 
complicated. Instead it provides a uniform theoretical 
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framework to cover various real time GNSS data 
processing scenarios. In fact, various TCAR-based real 
time positioning solutions belong to simplified versions 
of the generalised TCAR solutions given in Section 3.1. 
In this sub-section, we derive the TCAR solutions of 
several typical applications.  
 
Geometry-based AR with single epoch measurements 
 
In this case, the G matrix (30) and u vector (31) will be 
reduced to the following expressions, 
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The solutions are similarly referred to (29) and (32). 
Without constraint equations, e.g., Ca=0, the final 
solution (33) is simply reduced to 
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and its variance-covariance matrix is, 
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Geometry-free AR solution with measurements of a 
single epoch 
 
Through the linear transformation from Eqs.(14) and (15) 
to Eq (20), we obtain the geometry-free model for AR,  

sbss xBL ε+δ=                            (40a) 

where the transformed observation vector SL = SL , the 
coefficient matrix SBBs =  and transformed observation 

noise Sε = Sε  and then covariance matrix 
S

T
ε εQ = SQ S . 

The transformation matrix for the ionosphere-free 
example is given as follows (Li et al., 2010) 
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be estimated, 
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Without considering the error correlation in Ls, the 
geometry-free and ionosphere-free float ambiguity 
solution can be further simplified as: 
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Geometry-free AR solution using measurements of 
multiple epochs 
 
Considering measurements over multiple epochs, we 
introduce the time epoch index in the geometry-free 
model (40),  

)k))k(xB)k(L sbss ε+δ=                     (43a) 
the state transition equation, 
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where ( ) ( )b bk k 1δ = δ − ˆx x . Thus we have the float 

solution:  

bbbbb x~x̂ uG+δ=δ    (44c) 

 
Considering the diagonal nature of both BS(k) and Gbb 
matrices and Ignoring the correlation in Ls, one can 
easily derive that the float solution of the ( )b kδx  is 

actually the average observational vector Ls(k) over time 
divided by the corresponding wavelengths. 
 
Simplified TCAR models 
 
Simplification of TCAR problems leads to two results: (i) 
the observation equation can be simplified to include only 
a minimal number of state parameters, and (ii) a full AR 
problem for three-frequencies is decomposed into three 
sets of AR problems, and each set of ambiguity is 
resolved at a time, so that a complete TCAR problem is 
significantly reduced. For instance, TCAR with 
measurements of single epoch as defined by Eq. (20) can 
be completed with the following three separate steps: 
 
Step 1 is the geometry-free determination of the EWL 
formed between the two closest L-band carrier 
measurements, directly from the two corresponding code 
measurements from (15), 

[ ](0,1,1) (0,1, 1) (0,1,1) (0,1, 1) (0,1, 1) (0,1, 1)P N− − − −
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⎣ ⎦

P
Z Z

Φ
    (45) 

The estimate of (0,1, 1)N −Δ  is the corresponding float 

estimate rounded off to the nearest integer. 
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Step 2 forms the second EWL signal and resolves the 
integer ambiguity with a geometry-based estimator alone. 
The observation equation will be (Feng, 2008), 
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where the effect of the DD ionospheric bias with respect 
to L1 frequency is reduced to the factor of -0.0704 in 

(1, 6,5)−Δφ  and the effects of the tropospheric errors are 

negligible with respect to the wavelength. In other words, 
both ionospheric and tropospheric parameters are set to 
zeros. It is important to note that the ionospheric-free 
code measurement IFPΔ  is normally very noisy. Over 
medium baselines where the ionospheric delay may be 
smaller than the level of code noise in IFPΔ , the virtual 
codes (1,1,0)PΔ  can be used instead of IFPΔ  in (45) , 

resulting in the following equation. 
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(46b) 
Step 3 finds an independent observable, which is used 
together with a (1,1,0)PΔ  or refined WL to resolve the third 

ambiguity with geometry-based integer estimation and 
search algorithms, depending on the total noise levels of 
respective code and selected third observables. One can 
choose the following linear question to complete the AR 
process, 
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Both ionospheric and tropospheric parameters should be 
considered for the medium to long baselines. The 
problem is the linear model (47) would become ill-posed. 
Li et al.(2009) suggested an extended GNSS ambiguity 
resolution with regularization criterion and constraints as 
a possible solution. One may notice that the third signal 
can also be determined with the geometry-free model 
(42). 
 
4. Performance Benefits and Impacts  
 
The theoretical analysis by Feng (2008) and Feng and 
Rizos (2009) and experimental analysis with semi-
generated triple frequency data from long baselines (Feng 
and Li, 2008), Feng and Li, 2009, and Li et al 2009), have 
demonstrated a number of key performance TCAR 
benefits. The first key benefit of the additional frequency 
is that one can form two best extra-widelane virtual 
observables to allow for very easy and reliable 
determination of their ambiguities. The procedures 
include the rounding process for the first EWL 
observable and the LAMBDA process for the second 
EWL with its geometry-based model. The time to 
ambiguity fix is basically a single epoch in the both cases. 
Importantly, this performance can be achieved with very 
little distance constraints, as long as the base and rover 

receivers have sufficient satellites commonly in view. 
Secondly, with the two ambiguities-fixed EWLs or their 
derived WLs, the ionosphere-free WL phase can be 
obtained for position estimation without resolution of the 
third ambiguity. Experimental results have demonstrated 
the overall 3D RMS accuracy of 20 cm achievable with 
smoothing process over just 100 seconds (Feng and Li, 
2009). The dominating error factor for this level of 
positioning is the residual tropospheric bias in DD phase 
measurements. With respect to dual-frequency based 
wide area differential positioning, a major benefit of 
using the third frequency signals is the reduction of 
convergence time for the decimetre RMS accuracy from a 
few tens of minutes to a few minutes. The user terminal 
can update the DD ionospheric biases to the accuracy of a 
few centimetres with the above two ambiguity resolvable 
WL observables from epoch to epoch. As a result, the 
above accuracy of the 20 cm can be maintained using the 
ionospheric estimations of previous epochs virtually all 
the times. Phase breaks for whatever reasons impose very 
little impact on the continuity of the solutions. The third 
benefit is that the 100% AR success rates of the third 
ambiguity has achieved via the simple 
averaging/smoothing process over a period of about 6 to 
7 minutes. This result has significant performance 
potential for regional and global RTK and other real time 
GNSS applications, such as real time GNSS orbit 
determinations.  
 
5. Concluding Remarks 
 
This paper has contributed to generalisation of the 
problems of the TCAR and PE into real time GNSS data 
analysis problems with a continuously observing network 
on any scale. A general linear equation system has been 
presented that unifies geometry-free, geometry-based and 
geometry-constraint TCAR models and the state 
transition questions from time to time. Generalised 
TCAR solutions can inversely be simplified to the 
different integer solutions, such as geometry-free 
rounding and geometry-based LAMBDA solutions with 
measurements of single epoch or multiple epochs. 
Review of TCAR performance benefits based on the data 
analyses in some recent literatures have shown profound 
implications for the future GNSS development from both 
technology and application perspectives. 
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