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Abstract  
 
Discussed in this paper are the sigma point-based filter 
and smoother for a generic discrete-time nonlinear 
system model. The sigma-point filter is treated as an 
approximation of the generic nonlinear Kalman filter 
equations, which extends the chapter on nonlinear 
Kalman filter theory in Gelb (1974). The 
implementation of the square-root sigma-point filter is 
addressed in detail with the necessary numerical tools 
so that it can easily be used for practical use. The 
Rauch-Tung-Striebel (RTS) formulation of the sigma-
point smoother is derived by combining the statistical 
linear regression and the optimization criteria given in 
Rauch et al (1965). The notes can be used as a 
supplementary reading material in an introductory 
nonlinear estimation course. 

Keywords: sigma point, Kalman filter, smoother, 
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1 Introduction 

The analysis and prediction of complex dynamic 
phenomena and nonlinear phenomena have become 
very important in various fields of research (Kitagawa 
and Higuchi, 2001). Navigation is a typical field of 
nonlinear dynamic systems and in the core of 
navigation system development lies the problem of 
estimating the states of a dynamic system. When it 
comes to state estimation for nonlinear systems, 
however, there is no single solution available that 
clearly outperforms all other strategies (Nørgaad et al, 
2000). 

A classical discussion on nonlinear filters can be found 
in Gelb (1974), where various ways of dealing with the 
nonlinear filtering problem are introduced. The first 
approach is based on the truncated Taylor series 
expansion of the nonlinear system model. The 
extended Kalman filter (EKF) and a second-order filter 

are derived with this approach. The EKF has been a 
primary choice over the last two decades or more. 
However, it can suffer from performance degradation 
under severe nonlinearity. The second-order filter 
demonstrates an improved performance but it has 
higher computational complexity. Another approach is 
to use statistical approximation; for instance, the 
statistically linearized Kalman filter (SLKF). Generally 
the latter approach can achieve higher accuracy but a 
drawback is that the probability density function (PDF) 
should be known for the evaluation of the statistical 
expectation. Therefore, the latter approach could hardly 
find its applications. 

The unscented Kalman filter (UKF) has become an 
important option since the publication of Julier et al 
(1995). The UKF is based on the approximation of the 
PDF using deterministically chosen samples. The UKF 
has been applied in many fields including the low-cost 
inertial navigation (Shin, 2005), space attitude 
estimation (Crassidis and Markley, 2003), stock 
volatility estimation (Zoeter et al, 2004) and etc. The 
development of the UKF also inspired other researches. 
Nørgaad et al (2000) derived the second-order divided 
difference (DD2) filter based on the central divided 
difference and showed its similarity to the UKF. 
Lefebvre et al (2002) argued that the UKF is a special 
case of the linear regression Kalman filter. Thus, the 
sigma point Kalman filter (SPKF) has become the term 
to encompass those filtering methods that are based on 
deterministically chosen samples. 

Although numerous papers on sigma point-based 
filtering methods have been published, sigma point-
based smoothing methods have not been investigated 
much until recently. Shin (2005) used the 
forward/backward filtering approach. In some 
applications, however, the forward system model may 
not be invertible. In this case, the RTS formulation of 
the sigma point-based smoothing algorithm is required. 
Further, the RTS smoother has been the primary choice 
owing to its simplicity in the implementation. The 
SLKF or statistical linear regression Kalman filter 
(SLRKF) may not be suitable for practical use but they 
have become useful tools to find variants of sigma 
point-based estimation methods. Using the statistical 
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linearization technique, Vercauteren and Wang (2005) 
investigated decentralized sigma-point information 
filters and Terejanu et al (2008) derived the sigma-
point RTS smoother. 

Another important issue in practical system 
development is the square-root filtering. Square-root 
filters can further improve the numerical quality of the 
covariance update by propagating the square-root of 
the state error covariance, S defined as TSSP =  
where P is the state error covariance matrix and  T⋅  
denotes the transpose of a matrix. In 1970s, the UD-
factorization algorithm was introduced due to the 
heavy computational burden of the square-root 
implementation; it factors P into an upper-triangular 
matrix U with 1's along its main diagonal and a 
diagonal matrix D: TUDUP =  (Haykin, 1996, p 
327). With advances in the modern computer 
technology, however, computational cost is not as 
serious a factor as it used to be. Further, a Kalman 
filter using the UD-factorization may suffer from 
overflow/underflow problems (Stewart and Chapman, 
1990). Thus, the square-root implementation will be 
preferred for utmost quality in the covariance update 
(Haykin 1996, p. 328}. Although van der Merwe and 
Wan (2001) discussed that the square-root sigma-point 
filter was more efficient than the covariance 
formulation, most of the papers published so far are 
based on the covariance formulation. 

The purpose of this paper is to provide students with a 
practical introduction on the sigma-point based filter 
and smoother. The latest developments in this field will 
be merged into the frame work of classical ones. 
Mathematical preliminaries are given in Section 2.  
The generic nonlinear Kalman filter is discussed in 
Section 3 based on Gelb (1974). Sections 4 to 6 deal 
with the derivation of the EKF, the SPKF and the 
SLRKF from the generic Kalman filter, which clarifies 
the approximations made for each of these filters. The 
sigma-point RTS smoother is derived in Section 7 
based on the statistical linear regression and the 
optimality criteria given by Rauch et al (1965) using 
the Gaussian density assumption. With this approach, 
the derivation of the sigma-point RTS becomes very 
simple. Finally, some concluding remarks are given in 
Section 8. 

2 Mathematical preliminaries 

Basic definitions and theorems required to understand 
the rest of the paper are summarized here. Three 
important numerical tools are discussed as well: 
Givens rotations, Cholesky rank-1 modification 
methods, and statistical linear regression. The first two 
are required in building a square-root sigma-point filter 

and the third in deriving the sigma-point RTS 
smoother.  

Definition 1. For a random variable, x, the expected 
value is defined as 

∫==
x

dxxxpxEx )(][ˆ , (1) 

where p(·) denotes the probability density function. 

Definition 2. The Mahalanobis distance squared for a 
random vector xxx ˆ−=δ  with the covariance P is 
defined as follows: 

xPxx T
P

δδδ 12
1

−=− , (2) 

where ·-1

Definition 3. For an n×n matrix, A, the trace is defined 
as 

 denotes the inverse of a matrix. 

∑
=

=
n

i
iiaAtr

1
)( , (3) 

where aii

Definition 4. A matrix, A, is orthogonal if AA

 is the ith diagonal element of A. 
T=I, 

where I is an identity matrix. Hence, AT=A-1

Theorem 1. Let A be an n×r and B an r×n matrix. Then, 
tr(AB) = tr(BA) (Koch, 1988, p. 47). 

. 

Theorem 2. Let x be an n×1 vector and A a symmetrical 
n×n matrix. Then, AxxAxxT 2/)( =∂∂  (Koch, 1988, 
p. 82). 

Theorem 3. For a square matrix A, tr(A)=tr(AT

Theorem 4. Let A be an m×n and B an n×m matrix. 
Then, 

). 

TBAABtr =∂∂ /)( . Using this and Theorem 3, 

one can show that BABAtr T =∂∂ /)( . Further,  

)(/)( TT BBAAABAtr +=∂∂ . 

Lemma 1. The matrix inversion lemma, also called the 
Woodbury matrix identity, is a useful tool in the linear 
systems analysis: 

1111111 )()( −−−−−−− −=+ DABDACBAABCDA ,(4) 

where A, B, C and D are matrices of appropriate sizes. 

 

2.1 Minimum-variance estimation 
 
The minimum-variance estimator is an estimator that 
seeks to find the optimal state, x̂ , such that the 
following functional is minimized using the 
measurement z (Gelb, 1974, p. 104): 
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∫ −−=
x

T dxzxpxxxxxJ )|()ˆ)(ˆ()ˆ( , (5) 

where p(x|z) denotes the PDF of x conditioned on z. 
The solution to this problem is found from: 

]|[)|(ˆ zxEdxzxxpx
x

== ∫ , (6) 

which is the conditional mean estimate. 
 
2.2 Triangularization by Givens rotations 
 
Matrix triangularization methods, often called QR-
factorization methods, were  originally developed to 
solve least-squares problems and became essential 
tools in building a square-root Kalman filter (Grewal 
and Andrews, 2001, p. 229). Only Givens rotations will 
be introduced here for brevity; refer to Grewal and 
Andrews (2001) for other triangularization methods. 
 
Let A={aij} be an n×(r+n) matrix. Then, a (r+n)×(r+n) 
orthogonal matrix Θ can be post-multiplied to yield 
 

[ ]SA 0=Θ , (7) 
 
where S is an n×n upper triangular matrix. A in this 
setting is often called the prearray. Θ can be obtained 
by successive Givens rotations: 
 

∏
−+=

−=

Θ=Θ
1,...,1
1,...,1,

irj
nni

ij , (8) 

 
where Θij is the Givens rotation matrix that annihilates 

ija  for 1,,1, −= nni  and 1,,2,1 −+= irj  . 
Thus, Θij will take the following form; all diagonal 
elements are one except for θθθ cos, == ++ irirjj  and 
all off-diagonal elements are zero except for 

θθθ sin,, =−= ++ jirirj , where kmθ  is the kmth 
element of Θij. Hence, we can solve 
 

0sincos , =− + θθ iriij aa , (9) 

1cossin 22 =+ θθ , (10) 
 
to yield 
 

22
,/sin ijiriij aaa += +θ , (11) 

22
,, /cos ijiriiri aaa += ++θ , (12) 

 
 
As only the jth and the (r+i)th column of the prearray 
are affected by the multiplication of Θij, an efficient in-
place triangularization routine can be written. The 

following codes, written in GNU Octave script, can be 
used for the in-place triangularization, a corrected 
version of the script in Grewal and Andrews (2001, p. 
234): 
 

 
 
2.3 Cholesky rank-1 modifications 
 
Let A be an n×n positive definite matrix. Then, A has a 
Cholesky factor, S, such that SST = A, where S is an 
upper-triangular matrix. The rank-one update problem 

is to obtain an updated Cholesky factor, S~ , such that 
 

TTT xxSSSS +=~~
, (13) 

 
where x is an n×1 vector. The solution is obtained in 
the following way: 
 

[ ] [ ]SSx ~0=Θ , (14) 
 
where Θ is an orthogonal matrix annihilating the first 
column of the pre-array, which can be computed by 
successive Givens rotations. The rank-one downdate 

problem is to obtain a downdated Cholesky factor, S~ , 
such that: 
 

TTT xxSSSS −=~~
, (15) 

 
Let a be the solution vector of the linear system Sa = x 
and let 
 

aaT−= 1α . (16) 
 
Then the solution of the rank-one downdate problem 
can be obtained as follows (Dongarra et al, 1979): 
 









=Θ








SxS

aT

~
01

0
α

, (17) 

 
where Θ is an orthogonal matrix that annihilates the 
(1,2)-entry of the pre-array. 
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2.4 Statistical linear regression 
 
A nonlinear vector function f(x) of a random vector 
variable, x, can be linearized as follows: 
 

,)( ebAxxf ++=  (18) 
 
where A and b are respectively a matrix and a vector to 
be determined and e is the linearization error. If we 
want to have an unbiased linearization, 
 

0ˆ)(ˆˆ =−−= bxAxfe . (19) 
 
Thus,  
 

xAxfb ˆ)(ˆ −=  (20) 
 
and substituting the above into Eq. (18) yields 
 

fxAe δδ −= , (21) 
 

where xxx −= ˆδ  and )()(ˆ xfxff −=δ . Then, 
the weighted least squares solution of A can be 
obtained by minimizing the following cost function: 
 

][)( SeeEAJ T= , (22) 
 
where S is an arbitrary positive semi-definite matrix. 
Thus, substituting Eq. (21) into the following 
 

0)]([

)]([)(

=
∂
∂=

∂
∂=

∂
∂

T

T

SeetrE
A

SeetrE
AA

AJ

 (23) 

 
and using the theorems in Section 2, we can write 
 

1−= xxfxPPA , (24) 
 
where ][ T

xx xxEP δδ=  and ][ T
fx xfEP δδ= . 

Therefore, the linearization error covariance can be 
written as 
 

T
xxff

T
ee AAPPeeEP −== ][ , (25) 

 
where ][ T

ff ffEP δδ= . 
 
 
 

3 Generic nonlinear Kalman filter 

Let the discrete-time nonlinear system transition model 
be given as follows: 

kkkk wGkxfx +−= − )1,( 1 , (26) 
where f(·)is a nonlinear vector function; xk, wk and Gk 
are the system state vector, the system noise vector and 
the noise input mapping matrix at time tk, respectively. 
It is assumed that E[wk 0][ =T

kiwxE] = 0,  for all i, k 

and ikk
T
ki QwwE δ=][ , where ikδ  is the Kronecker 

delta function. The system is observed by the following 
nonlinear measurement model: 

kkk vxhz += )( , (27) 
where h(·) is a nonlinear vector function; zk is the 
measurement vector, vk is the measurement noise 
vector with E[vk ikk

T
ki RvvE δ=][] = 0, and 

0][ =T
ikvxE  for all i, k. Eqs. (26) and (27) can be 

applied to various real-world problems. 

The Kalman filter is a minimum variance estimator 
interested in propagating the first two moments of the 
PDF, mean and covariance, recursively. Let us assume 
that the estimates at time 1−kt  are given as follows: 

],...,|[ˆ 1111|1 −−−− = kkkk zzxEx , (28) 

][ 1|11|11|1
T

kkkkkk xxEP −−−−−− = δδ , (29) 

11|11|1 ˆ −−−−− −= kkkkk xxxδ . (30) 
 
The prediction stage, also called the time update, 
extrapolates the state to the next time epoch using the 
system transition model, Eq. (26): 
 

],...,|)1,([ˆ 1111| −−− −= kkkk zzkxfEx , (31) 

][ 1|1|1|
T

kkkkkk xxEP −−− = δδ , (32) 

kkkkk xxx −= −− 1|1| ˆδ . (33) 
 
Then the two moments are updated using the 
measurements taken at time tk. The update equations 
will be obtained following Gelb (1974, p. 185-187). 
Let the updated state vector be written as a linear 
function of measurements: 

kkkkk zKax +=|ˆ , (34) 
where ak and Kk

])([ˆ 1|1|| kkkkkkkkkk vxhKaxxx +++−= −−δδ

  are a vector and the filter gain matrix, 
respectively, to be determined. Substituting Eqs. (33), 
(30) and (27) into Eq. (34) yields 

, (35) 
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As we want to have an unbiased estimate, 
0][][ 1|| == −kkkk xExE δδ . Hence, 

)(ˆˆ 1| kkkkk xhKxa −= − , (36) 
 

which when substituted into Eq. (34) yields 

)](ˆ[ˆˆ 1|| kkkkkkk xhzKxx −+= − . (37) 
Also, the estimation error can be written as 

kkkkkkkkk vKxhxhKxx +−+= − )](ˆ)([ˆˆ 1|| δδ . (38) 
Assuming that Pk|k is independent of zk

T
kkk

T
kkkk

T
k

T
kkk

T
k

T
kkkkkkk

KRK

xhEKKhxE

KhhKPP

+

−−

+=

−−

−

][][

][

1|1|

1||

δδδδ

δδ

, we obtain 

 (39) 

where )()(ˆ kkk xhxhh −=δ . The minimum variance 
estimate is obtained by minimizing the cost function 

)()( |kkk PtrKJ = . Thus, solving 

0/)( =∂∂ kk KKJ  yields the optimal filter gain 
matrix: 

{ } 1
1| ][][ −

− += k
T
kk

T
kkkk RhhEhxEK δδδδ . (40) 

By substituting Eq. (40) into Eq. (39), the updated error 
covariance can be written as follows: 

{ } T
kk

T
kkkkk

T
kkkkkkkk

KRhhEKP

xhEKPP

+−=

−=

−

−−

][

][

1|

1|1||

δδ

δδ
. (41) 

4 Extended Kalman filter 

The EKF is based on the approximation of the 
nonlinear function. By applying the Taylor series 
expansion and taking up to the first order terms, the 
nonlinear function in Eq. (26) can be written as 
follows: 
 

1|1|1|11 )1,ˆ()1,( −−−−− Φ−−≈− kkkkkkk xkxfkxf δ , (42) 

1|11 ˆ1

1
1|

)1,(

−−− =−

−
− ∂

−∂=Φ
kkk xxk

k
kk x

kxf
. (43) 

 
The prediction equations of the EKF can be obtained 
by substituting Eq. (42) into Eqs. (31) and (32) as 
follows: 
 

)1,ˆ(ˆ 1|11| −= −−− kxfx kkkk , (44) 

T
kkk

T
kkkkkkkk GQGPP +ΦΦ= −−−−− 1|1|11|1| . (45) 

 
Similarly, the nonlinear function h(xk) in Eq. (27) can 
be approximated as follows: 
 

1|1| )ˆ()( −− −≈ kkkkkk xHxhxh δ , (46) 

1|ˆ

)(

−=
∂

∂=
kkk xxk

k
k x

xhH . (47) 

 
The update equations are obtained by substituting Eq. 
(46) to Eqs. (37), (40) and (41) as follows: 
 

)]ˆ([ˆˆ 1|1|| −− −+= kkkkkkkk xhzKxx , (48) 
1

1|1| )( −
−− += k

T
kkkk

T
kkkk RHPHHPK , (49) 

1|| )( −−= kkkkkk PHKIP . (50) 

5. Sigma-point Kalman filter 

In a SPKF, the PDF is approximated by a set of sigma 
points, iχ 's, and their associated weights, iw 's. As a 
Gaussian PDF can completely be described by the 
mean and the covariance, the sigma points are selected 
such that the following conditions hold: 

11

0
=∑ −

=

L

i iw , (51) 

xwL

i ii ˆ1

0
=∑ −

=
χ , (52) 

Pxxw T
i

L

i ii =−−∑ −

=
)ˆ()ˆ(1

0
χχ , (53) 

where L is the number of sigma points. 

Let ikk ,1|1 −−χ 's be the sigma points computed from the 

updated states, 1|1ˆ −− kkx , and the updated covariance, 

1|1 −− kkP . Each of the sigma points can be transformed 
through Eq. (26) as follows: 

)1,( ,1|1,1| −= −−− kf ikkikk χχ . (54) 

Then, Eqs. (31) and (32) can be approximated as 
follows: 

∑ −

= −− = 1

0 ,1|1|ˆ L

i ikkikk wx χ , (55) 

T
ikk

L

i ikkikk wP ,1|
1

0 ,1|1| −
−

= −− ∆∆= ∑ χχ , (56) 
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where 1|,1|,1| ˆ −−− −=∆ kkikkikk xχχ . Similarly, ikk ,1| −χ  
can be transformed through the measurement function, 
Eq. (27) as follows: 

)( ,1|, ikkik hZ −= χ . (57) 

Then, the following approximations can be applied: 

∑ −

=− =≈ 1

0 ,1|ˆ)]([ L

i ikikkk ZwzxhE , (58) 

∑ −

= −− ∆∆=≈ 1

0 ,,1|1| ][ L

i ikikki
xh

kkkk ZwPhxE χδδ , (59) 

∑ −

=
∆∆=≈ 1

0 ,,][ L

i
T

ikiki
hh

k
T
kk ZZwPhhE δδ , (60) 

where 1|,, ˆ −−=∆ kkikik zZZ . Substituting the above 
into Eqs. (37), (40), and (41) yields the sigma point 
Kalman filter update equations: 

)ˆ(ˆˆ 1|1|| −− −+= kkkkkkkk zzKxx , (61) 

1)( −+= k
hh

k
xh

kk RPPK , (62) 

T
kk

hh
kkkkkk KRPKPP )(1|| +−= − , (63) 

5.1 Unscented Kalman filter 
If the sigma points are obtained by the unscented 
transformation (UT), the resulting Kalman filter is 
called the Unscented Kalman Filter (UKF). The first 
proposal of the UT done by Julier and Uhlmann (1996) 
yielded L = 2n + 1 sigma points, where n is the number 
of the states: 







+=+−
=++
=

=

− nninx
ninx

ix

ni

ii

2,...,1ˆ
,...,1ˆ

0ˆ

σκ
σκχ  (64a) 





=+
=+

=
nin

in
wi 2,...,1)(2/1

0)/(
κ
κκ

 (64b) 

where κ is a scaling parameter for the fourth and higher 
moments of the PDF; and σ i

PSST =

 is the ith column of the 
square-root covariance matrix, S, that can be computed 
through the Cholesky decomposition: 

. (65) 

κ is usually set to 3-n and thus w0 

5.2 Square-root SPKF 

< 0 if n > 3. 

The covariance formulation has the risk of overflow or 
underflow due to the finite numerical precision and it 
also requires repeated computation of the Cholesky 
decomposition, of which the computational cost is very 
high. These problems can be avoided if the square-root 

covariance matrix is propagated by the Kalman filter 
directly. Let us first discuss the Kalman prediction of 
the square-root covariance matrix. If wi

T
kkL

kkLkk

QGsss

QGsssP

]...[

]...[
2/1

110

2/1
1101|

−

−−

×

=

 ≥ 0 for all i = 0, 
1, …, L-1, Eq. (56) can be rewritten as follows: 

 (66) 

where k
T
kk QQQ =2/2/1  and ikkii ws ,1| −∆= χ  for i = 

0, 1, …, L-1. Hence, Sk|k-1

]0[]...[ 1|1
2/1

110 −− =Θ kkkkkL SQGsss

can be obtained as follows: 

 (67) 

where Θ1k is an orthogonal matrix that annihilates the 
first L columns of the pre-array. If w0 

]~0[~]...[ 1|1
2/1

11 −− =Θ kkkkkL SQGss

< 0, the 
following computation is executed first: 

 (68) 

where k1
~Θ  is an orthogonal matrix that annihilates the 

first L-1 columns of the pre-array. Then, the Cholesky 
rank-1 downdate algorithm, discussed in Section 2.6, is 
applied: 

TT
kkkk

T
kkkk ssSSSS 001|1|1|1|

~~ −= −−−− , (69) 

where )ˆ(|| 1|0,1|00 −− −= kkkk xws χ . 

As the same strategy can be applied to the Kalman 
update equations, for brevity we will just discuss only 
about the case wi > 0 for all i = 0, 1, …, L-1. Writing 
square-root measurement update equations for the case 
of having wi 

hh
kS

< 0 is left as an exercise for students. Let 
  be an upper triangular matrix such that 

hh
k

Thh
k

hh
k PSS =)( . Then, hh

kS  can be computed as 
follows: 

]0[]...[ 2110
hh
kkL S=Θ−ςςς , (70) 

where )ˆ( 1|, −−= kkikii zZwς  and k2Θ  is an 
orthogonal matrix that annihilates the first L-n columns 
of the pre-array. Let kU  and 2/1

kR  be upper triangular 

matrices such that k
T
kk RRR =2/2/1 and 

k
hh

k
T
kk RPUU += . Then, kU  can be computed as 

follows: 

]0[][ 3
2/1

kk
hh
kk USR =Θ , (71) 

where Θ3k is an orthogonal matrix that annihilates the 
(1,1) entry of the pre-array. The Kalman gain matrix in 
Eq. (62) is now computed as follows: 
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1−−= k
T

k
xh

kk UUPK . (72) 

Finally, the updated square-root covariance matrix, Sk|k

niSSSS T
ii

Ti
kk

i
kk

Ti
kk

i
kk ,...,1,)()( 1

|
1

||| =−= −− ηη

, 
can be obtained by successive application of the 
Cholesky rank-1 downdate algorithm as follows: 

, (73) 

where η i denotes the ith column of KkUk
0
|kkS;  is 

equivalent to 1| −kkS  and n
kkS |  becomes kkS | . 

6 Statistical linear regression Kalman filter 
The results in Section 2.4 shall be used to develop the 
SLRKF. Considering Eq. (18), the nonlinear function 
in the system transition model, Eq. (26), can be 
statistically linearized as follows: 

kkk ffkfk ebxAkxf ++=− −− 11 )1,( , (74) 

where 
kf

A  and 
kf

B  are parameters to be determined; 

and 
kf

e  is the linearization error. Given the 

measurements available up to time tk-1 1|1ˆ −− kkx, and 

1|1 −− kkP  can be substituted into Eqs. (24), (20) and (25) 
to yield 

1
1|11|11| ][ −

−−−−−= kk
T

kkkkf PxfEA
k

δδ , (75) 

1|11| ˆˆ
−−− −= kkfkkf xAfb

kk
, (76) 

T
fkkff

T
ffef kkkkkk

APAPeeEP 1|1][ −−−== , (77) 

where 

],...,|)1,([ˆ
1111| −−− −= kkkk zzkxfEf ,  

)1,(ˆ
11|1|

−−= −−−
kxfff kkkkk

δ ,  

][ 1|1|
T
kkkkf ffEP

k −−= δδ .  

Thus, the prediction stage can be written as follows: 

kk fkkfkkkk bxAfx +== −−−− 1|11|1| ˆˆˆ , (78) 

T
kkkef

T
fkkf

T
kkkfkk

GQGPAPA

GQGPP

kkk

k
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+=

−−

−

1|1

1|
. (79) 

Similarly, the measurement function h(xk

kkk hhkhk ebxAxh ++=)(

) in Eq. (27) 
can be statistically linearized as follows: 

, (80) 

where 
khe  is also the linearization error and using the 

measurements available up to time tk-1 and with 

],...,|)([ˆ
111| −− = kkkk zzxhEh  

1
1|1|1| ][ −

−−−= kk
T

kkkkh PxhEA
k

δδ , (81) 

1|1| ˆˆ
−− −= kkhkkh xAhb

kk
, (82) 

T
hkkh

T
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T
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kk

kkk

APAhhE

eeEP

1|1|1| ][

][

−−− −=

=

δδ
, (83) 

kkkk hkkhkkk exAxhhh −=−= −−− 1|1| )(ˆ
1|

δδ . (84) 

Substituting Eqs. (81) through (84) into Eqs. (37), (40) 
and (41) yields 

)ˆ(ˆˆ 1|1|| kkkk hkkhkkkk bxAzKxx −−+= −− , (85) 

1
1|1| )( −

−− ++= keh
T
hkkh

T
hkkk RPAPAAPK

kkkk

 (86) 
T
kkeh

T
hkkhkkkkk KRPAPAKPP

kkk
)( 1|1|| ++−= −− . (87) 

One can easily verify that the statistical linear 
regression Kalman filter is equivalent to the sigma 
point Kalman filter if the statistical expectation 
operator is replaced by the weighted sum of sigma 
points. 

7 Sigma-point RTS smoother 

Given the smoothed state at time kt , Nkx |ˆ , the 

smoothed state at time 1−kt , Nkx |1ˆ − , can be obtained by 
minimizing the following combined Mahalanobis 
distance squared: 

2
1|1|1

2
~1|1

1
1|1

1

ˆ

ˆ)(

−
−−

−

−−−

−−

−+

−−=

kk

k
kk

Pkkk

QfkfNkk

xx

bxAxxJ
 (88) 

T
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ef
T
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k

APAP
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~
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+=
 (89) 

 

which states that one-step prediction using Nkx |1ˆ −  

should agree with  Nkx |ˆ  within the uncertainty in the 
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system transition model and at the same time Nkx |1ˆ −  

should agree with 1|1ˆ −− kkx  within the uncertainty of the 
forward updated solution. Eq. (88) is analogous to the 
result derived in Rauch et al. (1965) based upon the 
maximum-likelihood criteria. 

Thus, Nkx |1ˆ −  is the solution of 0/)( 11 =∂∂ −− kk xxJ : 

)ˆ(

)ˆ(~0

1|11
1

1|1

|1
1

−−−
−

−−

−
−

−+

−+=

kkkkk

Nkfkfk
T
f

xxP

xbxAQA
kkk  (90) 

So, using the above and Eq. (76), we can write the 
solution as follows: 
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 (91) 

111
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1
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T
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T
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s
k QAPAQAK
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 (92) 

where s
kK 1−  is called the smoothing gain matrix. 

Using the matrix inversion lemma and Eq. (89), we can 
write 
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 (93) 

Substituting the above into Eq. (92) and using Eq. (75), 
the smoothing gain matrix can be rewritten as follows: 
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1|1|1|1
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(94) 

If ][ 1|1|1
T
kkkk fxE −−− δδ  is evaluated using the sigma 

points, the resulting solution becomes that of the sigma 
point smoother: 

T
ikkikk

L

i i
T
kkkk wfxE ,1|,1|1

1

01|1|1 ][ −−−
−

=−−− ∆∆= ∑ χχδδ . (95) 

Finally, the smoothed covariance is computed as 
follows: 

Ts
kkkNk

s
kkkNk KPPKPP )]([ 11||11|1|1 −−−−−− −+= . (96) 

8 Remarks 

Latest developments in sigma point filter and smoother 
theories are summarized in this paper. It may be clearly 
identified that all the Kalman filters discussed here try 
to linearize the given nonlinear system model; the 
difference is in how they linearize. All the numerical 
building blocks are discussed in detail so that the 
readers can readily apply the theory to any practical 
examples; especially, the square-root formulation is 
emphasized. It is highly recommended for the students 
to investigate how the filters and smoothers work by 
simulations. 

For instance, a second-order system model is taken 
from Grewal and Andrews (2001, p. 185). Let 

])()()([ 321 kkk
T
k txtxtxx =  be the state vector 

and )( kk tzz =  the measurement. x1, x2, and x3

1
2

1
11

−− ∆+= k
k

kk xtxx

 are 
the displacement, the rate, and the damping coefficient, 
respectively. Then, the system and measurement model 
are given as follows: 

 

kk
kk

k
kk twxxtxx ∆++∆−+−= −−− )12()101(25 1

2
1

3
1

12
1

33
−= kk xx  

k
k

k vxz += 1  

where )( ki
k
i txx =  and 1−−=∆ kkk ttt  is the time 

interval. The initial values and the noise statistics are 
given as follows: 0ˆ 0|0 =x , IP 20|0 = , Qk = 4.47, Rk

• Generate the true values with x

 
= 0.01. For the given models, do the followings: 

3 = 0.1 and wk 
= vk

• Generate the noise w

 = 0. 

k and vk

• Build and run the EKF, the UKF, and the 
sigma-point RTS smoother for the system and 
measurement model with the noise added. 

 following the 
given statistics. 

• Compare the estimation errors and the 
covariance outputs from the filters and the 
smoother. 

• Repeat the same experiments by gradually 
increasing the errors in the initial estimates. 
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