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Abstract

Discussed in this paper are the sigma point-based filter
and smoother for a generic discrete-time nonlinear
system model. The sigma-point filter is treated as an
approximation of the generic nonlinear Kalman filter
equations, which extends the chapter on nonlinear
Kalman filter theory in Gelb (1974). The
implementation of the square-root sigma-point filter is
addressed in detail with the necessary numerical tools
so that it can easily be used for practical use. The
Rauch-Tung-Striebel (RTS) formulation of the sigma-
point smoother is derived by combining the statistical
linear regression and the optimization criteria given in
Rauch et al (1965). The notes can be used as a
supplementary reading material in an introductory
nonlinear estimation course.

Keywords: sigma point, Kalman filter, smoother,
nonlinear estimation

1 Introduction

The analysis and prediction of complex dynamic
phenomena and nonlinear phenomena have become
very important in various fields of research (Kitagawa
and Higuchi, 2001). Navigation is a typical field of
nonlinear dynamic systems and in the core of
navigation system development lies the problem of
estimating the states of a dynamic system. When it
comes to state estimation for nonlinear systems,
however, there is no single solution available that
clearly outperforms all other strategies (Ngrgaad et al,
2000).

A classical discussion on nonlinear filters can be found
in Gelb (1974), where various ways of dealing with the
nonlinear filtering problem are introduced. The first
approach is based on the truncated Taylor series
expansion of the nonlinear system model. The
extended Kalman filter (EKF) and a second-order filter
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are derived with this approach. The EKF has been a
primary choice over the last two decades or more.
However, it can suffer from performance degradation
under severe nonlinearity. The second-order filter
demonstrates an improved performance but it has
higher computational complexity. Another approach is
to use statistical approximation; for instance, the
statistically linearized Kalman filter (SLKF). Generally
the latter approach can achieve higher accuracy but a
drawback is that the probability density function (PDF)
should be known for the evaluation of the statistical
expectation. Therefore, the latter approach could hardly
find its applications.

The unscented Kalman filter (UKF) has become an
important option since the publication of Julier et al
(1995). The UKF is based on the approximation of the
PDF using deterministically chosen samples. The UKF
has been applied in many fields including the low-cost
inertial navigation (Shin, 2005), space attitude
estimation (Crassidis and Markley, 2003), stock
volatility estimation (Zoeter et al, 2004) and etc. The
development of the UKF also inspired other researches.
Ngrgaad et al (2000) derived the second-order divided
difference (DD2) filter based on the central divided
difference and showed its similarity to the UKEF.
Lefebvre et al (2002) argued that the UKF is a special
case of the linear regression Kalman filter. Thus, the
sigma point Kalman filter (SPKF) has become the term
to encompass those filtering methods that are based on
deterministically chosen samples.

Although numerous papers on sigma point-based
filtering methods have been published, sigma point-
based smoothing methods have not been investigated
much until recently. Shin (2005) wused the
forward/backward  filtering approach. In some
applications, however, the forward system model may
not be invertible. In this case, the RTS formulation of
the sigma point-based smoothing algorithm is required.
Further, the RTS smoother has been the primary choice
owing to its simplicity in the implementation. The
SLKF or statistical linear regression Kalman filter
(SLRKF) may not be suitable for practical use but they
have become useful tools to find variants of sigma
point-based estimation methods. Using the statistical
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linearization technique, Vercauteren and Wang (2005)
investigated decentralized sigma-point information
filters and Terejanu et al (2008) derived the sigma-
point RTS smoother.

Another important issue in practical system
development is the square-root filtering. Square-root
filters can further improve the numerical quality of the
covariance update by propagating the square-root of

the state error covariance, S defined as P =SS’

where P is the state error covariance matrix and

denotes the transpose of a matrix. In 1970s, the UD-
factorization algorithm was introduced due to the
heavy computational burden of the square-root
implementation; it factors P into an upper-triangular
matrix U with 1's along its main diagonal and a

diagonal matrix D: P=UDUT (Haykin, 1996, p
327). With advances in the modern computer
technology, however, computational cost is not as
serious a factor as it used to be. Further, a Kalman
filter using the UD-factorization may suffer from
overflow/underflow problems (Stewart and Chapman,
1990). Thus, the square-root implementation will be
preferred for utmost quality in the covariance update
(Haykin 1996, p. 328}. Although van der Merwe and
Wan (2001) discussed that the square-root sigma-point
filter was more efficient than the covariance
formulation, most of the papers published so far are
based on the covariance formulation.

The purpose of this paper is to provide students with a
practical introduction on the sigma-point based filter
and smoother. The latest developments in this field will
be merged into the frame work of classical ones.
Mathematical preliminaries are given in Section 2.
The generic nonlinear Kalman filter is discussed in
Section 3 based on Gelb (1974). Sections 4 to 6 deal
with the derivation of the EKF, the SPKF and the
SLRKF from the generic Kalman filter, which clarifies
the approximations made for each of these filters. The
sigma-point RTS smoother is derived in Section 7
based on the statistical linear regression and the
optimality criteria given by Rauch et al (1965) using
the Gaussian density assumption. With this approach,
the derivation of the sigma-point RTS becomes very
simple. Finally, some concluding remarks are given in
Section 8.

2 Mathematical preliminaries

Basic definitions and theorems required to understand
the rest of the paper are summarized here. Three
important numerical tools are discussed as well:
Givens rotations, Cholesky rank-1 modification
methods, and statistical linear regression. The first two
are required in building a square-root sigma-point filter
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and the third in deriving the sigma-point RTS
smoother.

Definition 1. For a random variable, X, the expected
value is defined as

% =E[X]= pr(x)dx, 1)

where p(-) denotes the probability density function.

Definition 2. The Mahalanobis distance squared for a

random vector X = X — X with the covariance P is
defined as follows:

[ =" Pox, @

where - denotes the inverse of a matrix.

Definition 3. For an nxn matrix, A, the trace is defined
as

tr(A) = zn‘, & » @)
i=1

where aj; is the ith diagonal element of A.

Definition 4. A matrix, A, is orthogonal if AA'=I,
where | is an identity matrix. Hence, A'=A™.

Theorem 1. Let A be an nxr and B an rxn matrix. Then,
tr(AB) = tr(BA) (Koch, 1988, p. 47).

Theorem 2. Let x be an nx1 vector and A a symmetrical

nxn matrix. Then, (X" AX)/0x = 2AX (Koch, 1988,
p. 82).

Theorem 3. For a square matrix A, tr(A)=tr(A").

Theorem 4. Let A be an mxn and B an nxm matrix.
Then, otr(AB)/0A =B" . Using this and Theorem 3,

one can show that otr (BA")/0A = B.. Further,

dtr(ABAT)/0A= A(B+BT).

Lemma 1. The matrix inversion lemma, also called the
Woodbury matrix identity, is a useful tool in the linear
systems analysis:

(A+BCD)™"=A"-A'B(C'DA'B) DA™ (4)

where A, B, C and D are matrices of appropriate sizes.

2.1 Minimum-variance estimation

The minimum-variance estimator is an estimator that

seeks to find the optimal state, X , such that the
following functional is minimized using the
measurement z (Gelb, 1974, p. 104):
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J(®) = [(X=0F=x)" p(x| 2)dx, ©

where p(x|z) denotes the PDF of x conditioned on z.
The solution to this problem is found from:

)?:pr(x|z)dx:E[x|z], (6)

which is the conditional mean estimate.
2.2 Triangularization by Givens rotations

Matrix triangularization methods, often called QR-
factorization methods, were originally developed to
solve least-squares problems and became essential
tools in building a square-root Kalman filter (Grewal
and Andrews, 2001, p. 229). Only Givens rotations will
be introduced here for brevity; refer to Grewal and
Andrews (2001) for other triangularization methods.

Let A={a;} be an nx(r+n) matrix. Then, a (r+n)x(r+n)
orthogonal matrix ® can be post-multiplied to yield

Ae=[0 s], )

where S is an nxn upper triangular matrix. A in this
setting is often called the prearray. ® can be obtained
by successive Givens rotations:

0= 0, ®)
n-L,..,1

where ©j; is the Givens rotation matrix that annihilates
a; for i=nn-1..1and j=12,... r+i-1.
Thus, @; will take the following form; all diagonal
elements are one except for €, =6, ; ,; =C€0S6 and
all off-diagonal elements are zero except for

;i =—06.,;=sin6 , where 6, is the kmth
element of ®;. Hence, we can solve
a;cosf—a;,,;sind=0, 9)
sin“@+cos*0=1, (10)
to yield

sing=a;/,a +a; (12)
cosf=a,, /,a ., +a; . (12)

As only the jth and the (r+i)th column of the prearray
are affected by the multiplication of ®;, an efficient in-
place triangularization routine can be written. The
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following codes, written in GNU Octave script, can be
used for the in-place triangularization, a corrected
version of the script in Grewal and Andrews (2001, p.
234):

for 1 = n:-1:1,
for 7 = l:r+i-1,

tho = sqre(ACLl,r+1i)72 + A(L,j072);
g = A(1,j)/rho;

c = Afl,r+i)/tho;

for k = 1:1,

x=c* Alk,j) - s % A(k,r+i);
All,r+1) = a % A(k,j) + ¢ % Alk,r+i);
Alk,j) = x;
endfor
endfor
endfor

2.3 Cholesky rank-1 modifications

Let A be an nxn positive definite matrix. Then, A has a
Cholesky factor, S, such that SST = A, where S is an
upper-triangular matrix. The rank-one update problem

is to obtain an updated Cholesky factor, S , such that
SST =SST +xx", (13)

where x is an nx1 vector. The solution is obtained in
the following way:

[x sle=p §] (14)

where © is an orthogonal matrix annihilating the first
column of the pre-array, which can be computed by
successive Givens rotations. The rank-one downdate

problem is to obtain a downdated Cholesky factor, § ,
such that:

SST=8ST —xx", (15)

Let a be the solution vector of the linear system Sa = x
and let

a=+l-a"a. (16)

Then the solution of the rank-one downdate problem
can be obtained as follows (Dongarra et al, 1979):

T
o a 1 0
0= ~ 1, 7
0 S X S
where © is an orthogonal matrix that annihilates the
(1,2)-entry of the pre-array.
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2.4 Statistical linear regression

A nonlinear vector function f(x) of a random vector
variable, x, can be linearized as follows:

f(x)=Ax+b+e, (18)
where A and b are respectively a matrix and a vector to

be determined and e is the linearization error. If we
want to have an unbiased linearization,

6=f(x)—AX-b=0. (19)
Thus,
b= f(x)- AR (20)

and substituting the above into Eq. (18) yields

e=AX—-& , (21)

where K=X—X and & = f(x)— f(x) . Then,
the weighted least squares solution of A can be
obtained by minimizing the following cost function:

J(A) =E[e"Se], (22)

where S is an arbitrary positive semi-definite matrix.
Thus, substituting Eq. (21) into the following

2I(A) _d

T
A SA E[tr(e Se)] 2
= A E[tr(See")]=0
and using the theorems in Section 2, we can write
A=P,P., (24)

where P, =E[&&'] and P, =E[&&X ]

Therefore, the linearization error covariance can be
written as

P, =E[ee']=P, — AP AT, (25)

where P, = E[F& ].
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3 Generic nonlinear Kalman filter

Let the discrete-time nonlinear system transition model
be given as follows:

X, = f (%, k=) +Gw,, (26)
where f(-)is a nonlinear vector function; x,, wy and Gy

are the system state vector, the system noise vector and
the noise input mapping matrix at time ty, respectively.

It is assumed that E[w,] = 0, E[x,w; ] =0 for all i, k

and E[w,w; ]=Q,J, , where &, is the Kronecker

delta function. The system is observed by the following
nonlinear measurement model:

z, =h(x,)+Vv,, (27)

where h(:) is a nonlinear vector function; z, is the
measurement vector, v, is the measurement noise

vector with E[v] = 0, E[vv,]=RJ, and
E[x.v] ]=0 for all i, k. Egs. (26) and (27) can be
applied to various real-world problems.

The Kalman filter is a minimum variance estimator
interested in propagating the first two moments of the
PDF, mean and covariance, recursively. Let us assume

that the estimates at time t,_, are given as follows:

Xk—ﬂk—l = E[Xk—l | Zyyeeny Zk—l]’ (28)
T

Peas = B[ 1K el (29)

Ky 1 = )zk—ﬂk—l — X (30)

The prediction stage, also called the time update,
extrapolates the state to the next time epoch using the
system transition model, Eq. (26):

X = ELF (X, k=D [ 24,24, (31)
|:)klk—l = E[&klk—l&ak&] ) (32)
HKyges = Xger = X (33)

Then the two moments are updated using the
measurements taken at time t,. The update equations
will be obtained following Gelb (1974, p. 185-187).
Let the updated state vector be written as a linear
function of measurements:

X =8 + Kz, (34)
where a, and K, are a vector and the filter gain matrix,

respectively, to be determined. Substituting Egs. (33),
(30) and (27) into Eq. (34) yields

Ky = Kyg g — )’zk|k—l +a, + K [h(x)+v.], (35)
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As we want to have an unbiased estimate,
E[K 1= E[S¥y 4] =0 . Hence,

aQ = )A(k|k—1 - Kkﬁ(xk) , (36)

which when substituted into Eq. (34) yields

)zklk = )zk|k—1 + K, [z, —h(x,)]. (37)
Also, the estimation error can be written as
&k|k = &k|k—l+ K [h(x)=h(x )]+ Ky, (38)
Assuming that Py is independent of z,, we obtain
Pk|k = Pk|k—1 + Kk[&k&; ]K;
- E[&Hk—ld‘];]KI—{ - KkE[&k&;k—l] (39)
+ KR, KI
where dh, = ﬁ(xk)— h(X,). The minimum variance
estimate is obtained by minimizing the cost function
J(K,) =tr(Ry) : Thus, solving

dJ(K,)/ 0K, =0 vyields the optimal filter gain
matrix:

K, = E[& . HE[h M 1+R, . (40)

By substituting Eq. (40) into Eq. (39), the updated error
covariance can be written as follows:

Pk|k = I:)|<||<—1 - Kk E[a]k&-kﬁk—l]

. (41)
=Bya— Kk{E[éhka]I I+ R }K;

4 Extended Kalman filter

The EKF is based on the approximation of the
nonlinear function. By applying the Taylor series
expansion and taking up to the first order terms, the
nonlinear function in Eq. (26) can be written as
follows:

f(X k=1 = f ()A(k-uk—lv kK—1)— @y My q, (42)

_ 9f (Xeu k1)

(I)klk—l = an (43)
-1

Xe1=Re -1
The prediction equations of the EKF can be obtained

by substituting Eq. (42) into Egs. (31) and (32) as
follows:

Xk|k—l = f ()zk—ﬂk—li k-1), (44)

192

Pk\k—l = q)k|k—lPk—]Jk—lq)1|k—l + GkaG; ' (45)

Similarly, the nonlinear function h(x,) in Eq. (27) can
be approximated as follows:

h(x,) = h()A(k|k—1) —H Ky (46)
oh(x,)

H =%/ . 47

v ox, (47)

X =Xlk-1

The update equations are obtained by substituting Eq.
(46) to Eqs. (37), (40) and (41) as follows:

)A(k|k = )A(k|k—1 + Kk[zk - h()A(ku(—l)]’ (48)
Ky = Pk|k—lHkT(HkPk|k—lHII +R)™, (49)
Pa = (I =K H)Bya- (50)

5. Sigma-point Kalman filter

In a SPKF, the PDF is approximated by a set of sigma
points, %;'s, and their associated weights, W,'s. As a

Gaussian PDF can completely be described by the
mean and the covariance, the sigma points are selected
such that the following conditions hold:

S =L &
L-1 -

Doz =X, (52)

S Wiz -0z - =P, (53)

where L is the number of sigma points.
Let ¥y yk;i 'S be the sigma points computed from the
updated states, )A(kal, and the updated covariance,

Py_ik_1 - Each of the sigma points can be transformed
through Eq. (26) as follows:

Kikai = F M K—-1). (54)

Then, Egs. (31) and (32) can be approximated as
follows:

~ L1
X1 = Zi:O W, Xik-vi o (59)

L1
Pika = Zizo WiAZk|k—1,iAZII|k—l,i : (56)
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where Ay 1i = Nikesi — Xees - Similarly, Fip
can be transformed through the measurement function,
Eq. (27) as follows:

Zy ;i =h(Xgpesi) - (57)
Then, the following approximations can be applied:

A L1
E[h(X)] = Zys = D WiZy; (58)

L1

E[5Xk|k—la]k] = Pth = 2i=0 WiAZklk—lyiAZk,i . (59)
L-1

E[hay1=R" =Y WAZ AZ];, (60)

where AZ, =2, —2, . Substituting the above

into Eqgs. (37), (40), and (41) yields the sigma point
Kalman filter update equations:

)A(k|k = )’zk|k—1 +K, (2, - 2k|k—1) , (61)
Ky = Pth(thh + Rk)_l’ (62)
Pk = Pk — Ky (thh +ROK{ (63)

5.1 Unscented Kalman filter

If the sigma points are obtained by the unscented
transformation (UT), the resulting Kalman filter is
called the Unscented Kalman Filter (UKF). The first
proposal of the UT done by Julier and Uhlmann (1996)
yielded L = 2n + 1 sigma points, where n is the number
of the states:

X i=0
Xi=3X++n+xo, i=1..n (64a)
X—+n+xo,_, i=n+1..2n

kI(n+x) 1=0
i = . (64b)
1/2(n+x) i1=1..2n
where x is a scaling parameter for the fourth and higher
moments of the PDF; and o; is the ith column of the
square-root covariance matrix, S, that can be computed
through the Cholesky decomposition:

SST=P. (65)
x is usually set to 3-n and thus wo < 0 if n > 3.

5.2 Square-root SPKF

The covariance formulation has the risk of overflow or
underflow due to the finite numerical precision and it
also requires repeated computation of the Cholesky
decomposition, of which the computational cost is very
high. These problems can be avoided if the square-root
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covariance matrix is propagated by the Kalman filter
directly. Let us first discuss the Kalman prediction of
the square-root covariance matrix. If w; > 0 for all i =0,
1, ..., L-1, Eq. (56) can be rewritten as follows:

1/2
Pk\k—l:[so S, o Sy GGy 1

/
x[s, 8, .. S, GQT

where Q?Q; ' =Q, and s, = W, Ay fori=
0,1, ..., L-1. Hence, Syy.1can be obtained as follows:

[sy s St GkQ&IZ]le:[O Sk|k—1] (67)

where Oy is an orthogonal matrix that annihilates the
first L columns of the pre-array. If wy, < 0, the
following computation is executed first:

[s;, ... s GkQ;IZ]élk:[o §k||<—1] (68)

where ©,, is an orthogonal matrix that annihilates the

first L-1 columns of the pre-array. Then, the Cholesky
rank-1 downdate algorithm, discussed in Section 2.6, is
applied:

(66)

T o oT T
Sk|k—lsk|k—1 = Sk|k—lsk|k—1 — S¢S0 (69)

where Sy = /| Wy [(Xika0 — )A(klk—l) '

As the same strategy can be applied to the Kalman
update equations, for brevity we will just discuss only
about the case w; > 0 forall i =0, 1, ..., L-1. Writing
square-root measurement update equations for the case
of having w; < 0 is left as an exercise for students. Let

S,?h be an upper triangular matrix such that
S"(S\™" =P™. Then, S, can be computed as
follows:

S0 & 6419, =[0 th], (70)

where ¢ =W, (Z,;—2,) and ©, is an
orthogonal matrix that annihilates the first L-n columns
of the pre-array. Let U, and Ri/ 2 be upper triangular

R/?R/?=R,  and
UU; =P™+R, . Then, U, can be computed as

follows:

[Rilz Sl?h]@Bk:[O Uk]’ (71)

matrices such that

where O3 is an orthogonal matrix that annihilates the
(1,1) entry of the pre-array. The Kalman gain matrix in
Eq. (62) is now computed as follows:
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Kk = PthUk_TU|<_1- (72)

Finally, the updated square-root covariance matrix, Sy,
can be obtained by successive application of the
Cholesky rank-1 downdate algorithm as follows:

Si (S =S S’ —ml L i=1..,n,  (73)

where 7; denotes the ith column of K Uy; Sflk is

equivalentto S, ; and S, becomes S, .

6 Statistical linear regression Kalman filter

The results in Section 2.4 shall be used to develop the
SLRKF. Considering Eq. (18), the nonlinear function
in the system transition model, Eg. (26), can be
statistically linearized as follows:

f (X0, k=1 =A; X, +b; +e, (74)

where Afk and Bfk are parameters to be determined,
and €; is the linearization error. Given the
measurements available up to time t., )A(k—uk—l and

F’ka1 can be substituted into Egs. (24), (20) and (25)
to yield

Ay, = E[SF s I—ﬂk—l]Pk:%Jk—l’ (75)
bfk = fk|k—1 - Afk ik—ﬂk—l’ (76)
P, =Ele e} 1=P, — A, Py Al (77)
where

fuea = ELF (X0, k=D) [ 2, 241

&k‘k,l = fk|k—l —f (Xk—l’ k-1),

Pfk = E[& k|k—1a: k-:—k—l] .

Thus, the prediction stage can be written as follows:
)zk|k—l = fk|k—1 = Afk ik—uk—l + bfk , (78)
Pk\k—l = Pfk +GkaGkT

T . (79)
= Afk Pk—JJk—lAfk + Pefk +G,Q.G,

Similarly, the measurement function h(xy) in Eq. (27)
can be statistically linearized as follows:

h(x,) = A, X +Db, +e, . (80)
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where €, is also the linearization error and using the
measurements available up to time tk-1 and with

~

hyes = E[N(X) | 23,02, 4]

A, = E[&klk—l&-kﬁk—l] Pk|_k1—l’ (81)
bhk = hk|k—l - Ahk ik\k—l , (82)
Pa, = E[ehke;k]

i - (83)
= E[d]k|k—1a1k|k—l] - Ank Pk|k—lAhk

&Hm = Ak|k—1 - h(Xk) = Ahk &(klk—l - ehk : (84)

Substituting Eqgs. (81) through (84) into Egs. (37), (40)
and (41) yields

)’Zk‘k = )2k|k—l + |<k (Zk - 'A‘hk )?k|k—1 - bhk) , (85)
Ky = |<||<—1ArTk (A, l:)|<||<—1'6‘1:k + P + R )"
(86)

Pak = B — Ky (A‘nk Pk|k71AJk +PR, + ROKy . (87)

One can easily verify that the statistical linear
regression Kalman filter is equivalent to the sigma
point Kalman filter if the statistical expectation
operator is replaced by the weighted sum of sigma
points.

7 Sigma-point RTS smoother

Given the smoothed state at time t, , )A(k‘N , the

smoothed state at time t, ,, )A(HN , can be obtained by

minimizing the following combined Mahalanobis
distance squared:

~ 2
J(%a) = kam = A X1 by, ‘ 5

; (88)

+ ka—uk—u — X4

1
Bk

6k = GkaGkT + Pefk
. (89)
= Pk|k—1 - Afk Pk—JJk—lAfk

which states that one-step prediction using )A(k-uN

should agree with )A(klN within the uncertainty in the



Shin : Sigma Point-Based Estimation

system transition model and at the same time )A(k-uN

should agree with )A(kfukfl within the uncertainty of the

forward updated solution. Eq. (88) is analogous to the
result derived in Rauch et al. (1965) based upon the
maximume-likelihood criteria.

Thus, X,_yy is the solution of dJ (X, _;)/ 09X, =0:
TA-L PN
0=A;Q (Afk X "‘bfk — Xn)

-1 A~
+ Pk—]Jk—l(Xk—l - Xk—ﬂk—l)

So, using the above and Eq. (76), we can write the
solution as follows:

(90)

s (AT AL -1 -1
X = (AL QA +Blyy)
o TA-1/s
X [Pk—ljk—lxk—ﬂk—l + Afk Qk (Xk|N -b

— % S <o %
- Xk—]Jk—l + Kk—l(Xk|N - Xk|k—1)

f, )] (91)

Kks—l = (AIleZ lAfk + Pkijk—l)il AIK Q¢ ' (92)
where K| , is called the smoothing gain matrix.

Using the matrix inversion lemma and Eq. (89), we can
write

(AT leA + P k-1 1)7 R —1k-1
- Pk—]Jk—lAIk (Qk + A Pk k-1 ) Afk k—1lk—1 (93)
= Pk—JJk—l - Pk—]Jk 1AT Pk 1k~ 1A P —1k-1

Substituting the above into Eq. (92) and using Eq. (75),
the smoothing gain matrix can be rewritten as follows:

KkS 1 =FR 1k~ LA k|k 1(Pk|k 42— AR —1k 1AT )Q

=R 1k 1AIK Pk|k -1 (94)

= E[dX, -1k l&k|k 1]Pk|_k1—1

If E[(Sxk_uk_lﬁka_l] is evaluated using the sigma

points, the resulting solution becomes that of the sigma
point smoother:

L1
E[&(k—ﬂk—l k= 4]= 2 WA, 1|AZk|k i (99)

Finally, the smoothed covariance is computed as
follows:

Pk—]JN = Pk—]Jk—l + Kks—l[Pk|N - Pk|k—1](KkS—l)T . (96)
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8 Remarks

Latest developments in sigma point filter and smoother
theories are summarized in this paper. It may be clearly
identified that all the Kalman filters discussed here try
to linearize the given nonlinear system model; the
difference is in how they linearize. All the numerical
building blocks are discussed in detail so that the
readers can readily apply the theory to any practical
examples; especially, the square-root formulation is
emphasized. It is highly recommended for the students
to investigate how the filters and smoothers work by
simulations.

For instance, a second-order system model is taken
from Grewal and Andrews (2001, p. 185). Let

X, =[x ) X, (t) X (t)] be the state vector
and z, = z(t,) the measurement. X;, X,, and Xz are

the displacement, the rate, and the damping coefficient,
respectively. Then, the system and measurement model
are given as follows:

k _ k-1 k-1
X =X tTALX,

= 25X + (L-10At, Xs ) x5 + (12 + W, )At,

k _ k4
X3 = X3

k
Z, =X +V,

where X = x.(t, ) and At =t —t _, is the time
interval. The initial values and the noise statistics are
given as follows: Xy, =0, Py =21, Q, = 447, R,
= 0.01. For the given models, do the followings:
e  Generate the true values with x; = 0.1 and wy
=V = 0.
e Generate the noise wy and vy following the
given statistics.

e Build and run the EKF, the UKF, and the
sigma-point RTS smoother for the system and
measurement model with the noise added.

e Compare the estimation errors and the
covariance outputs from the filters and the
smoother.

e Repeat the same experiments by gradually
increasing the errors in the initial estimates.
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