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Abstract 
 
One of the research focuses in dealing with integer least 
squares problem is the decorrelation technique to 
improve the efficiency of the integer parameter search 
progress. It remains a challenging issue and becomes 
even more critical in processing multi-GNSS signals. 
Currently, there are three main decorrelation techniques 
being employed: the integer Gaussian decorrelation, the 
Lenstra–Lenstra–Lovász (LLL) algorithm and the 
inverse integer Cholesky decorrelation (IICD) method. 
To measure the performance of decorrelation techniques, 
the condition number is usually used as the criterion. 
Additionally, the number of grid points in the search 
space can be directly utilized as a performance measure 
according to the decorrelation purpose. The success rate 
of integer bootstrapping is also calculated in terms of 
studying the ambiguity resolution reliability. 
 
This paper presents a modified inverse integer Cholesky 
decorrelation (MIICD) method to improve the 
decorrelation performance out the other three techniques. 
Decorrelation performance is evaluated based on the 
condition number of the decorrelation matrix and the 
number of search candidates. Performance parameters 
are compared using both simulation and real data. The 
simulation experiment scenarios employ the isotropic 
probabilistic model using a predefined eigenvalue and 
without any geometry or weighting system constraints. 
Simulation analysis shows that MIICD method 
outperforms other three methods in terms of condition 
numbers achieved. The real data experiment scenarios 
involve both single and dual constellations cases. 
Experimental results demonstrate that in the single 
constellation case, the condition number of MIICD is 
smaller than that of LAMBDA over 78.65% times while 
the number of search candidate points is smaller over 
98.92% of time. In the dual constellation case, these two 
numbers are 98.78% and 100% respectively 
 
Keywords: Modified Inverse Integer Cholesky 
Decorrelation, LLL, Condition Numbers, Ambiguity 
Resolution 
_____________________________________________ 

1. Introduction 
 
Integer ambiguity resolution is the key to high precision 
positioning using carrier phase measurements from 
Global Navigation Satellite System (GNSS). Given the 
GNSS linear observation equations 
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and the criterion:  
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where L is a vector of ‘observed minus computed’ 
double-difference (DD) observations; A is the design 
matrix for the vector of real-valued unknowns δx ; B is 
the design matrix for the vector of integer DD 
ambiguities N; LQ is the corresponding variance matrix 

of observables and e is the vector of unmodelled error 
and measurement noise.  
 
Solving the above mixed integer least-squares (MILS) 
problem has proved to be equivalent to the solution of 
the integer least-squares (ILS) problem: 
 

ˆ

2

1
ˆmin , pZ

 
  

 N
QN

N N N                                            (3) 

 

where N̂  is a float ambiguity vector, with the 
corresponding variance-covariance matrix 

N̂
Q  . For 

more details on the procedure of solving MILS or ILS, 
see (Teunissen, 1995; Hassibi & Boyd, 1998; Grafarend, 
2000; Chang & Zhou, 2007). 
 
The integer ambiguity search space is defined as 
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It is actually a hyper-ellipsoid centered at N̂ , its shape 
and orientation are governed by 

N̂
Q  and its size can be 

controlled by 2 . In general,  
N̂

Q  has high correlation 

since the DD operation and correlation between 
measurements errors. Hence, the integer ambiguity 
search space is highly elongated. In order to make the 
search process more efficient, different decorrelation 
techniques have been developed. The essence of 
decorrelation is to apply an admissible integer 
unimodular matrix Z to eliminate the off-diagonal 
elements of 

N̂
Q  or reduce the size of the correlation 

coefficients. This can be expressed as 
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Therefore the search space (4) can be transformed as 
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The condition number is usually used to indicate the 
performance of decorrelation methods. For instance, the 
well-known least-squares ambiguity decorrelation 
adjustment (LAMBDA) method is based on integer 
Gaussian decorrelation (Teunissen et al., 1995, 1996 and 
1998). A detailed description and implementation of this 
method is referred to De Jonge & Tiberius, (1996). 
Another algorithm named Lenstra–Lenstra–Lovász (LLL) 
was originally developed for lattice basis reduction, 
which can also be used to reduce the condition number 
of matrix (Lenstra, Lenstra, & Lovász, 1982). This 
algorithm was suggested for the decorrelation of the 
integer ambiguities by Hassibi & Boyd (1998) and 
Grafarend (2000). Based on a modified LLL algorithm, 
Chang and Zhou (2007) developed a Matlab package for 
solving MILES problems and demonstrated higher 
computation efficiency than LAMBDA. Xu (2001) 
developed a random simulation approach to compare the 
performance of different decorrelation method, but the 
simulation is more general, without referring to any 
particular satellite-receiver geometry, observation span 
and measurement weightings. This non-informativeness 
guarantees the statistical fairness of comparing different 
methods numerically because these three factors may 
favor a particular method. Xu also proposed an inverse 
integer Cholesky decorrelation method and demonstrated 
that this method outperformed LAMBDA and LLL 
method. However, the performance of these 
decorrelation methods in dealing with practical high 
dimension cases remains unknown (Xu, 2001; Svendsen, 
2006). In the near future, more frequency signals, e.g. L1, 
L2 and L5 and more navigation satellites systems, e.g. 
GPS and Galileo could be used. Introducing more 
observations from three frequency signals and dual 
constellations changes the condition number of 

N̂
Q  . 

Using the same data set as described in Section 4, Figure 

1 plots the condition number of 
N̂

Q  and the 

corresponding decorrelated matrix 
N̂dec

Q  for both double 

and triple frequencies cases. It is clearly observed that 
the 

N̂dec
Q  condition numbers of triple frequencies are 

larger than that of double frequencies. Figure 2 compares 
the condition numbers of 

N̂
Q  and 

N̂dec
Q  between single 

GPS constellation and the simulated dual constellations, 
which refer to the combination of GPS measurements 
data sets recorded at two epochs separated by a few 
hours for data analysis (Feng, 2005) as outlined in 
Section 3.2 It is seen that the condition numbers of 

N̂dec
Q  are larger than these for the single constellation. 

In this research effort, a modified inverse integer 
Cholesky decorrelation method is proposed to further 
decorrelate  

N̂
Q  and reduce the conditional numbers.  

 
Figure 1: Condition numbers of 

N̂
Q  and 

N̂dec
Q  in L1L2 

and L1L2L5 cases. Left plot: the float ambiguity 
variance-covariance matrix 

N̂
Q  Right plot: the 

decorrelated ambiguity variance-covariance matrix 

N̂dec
Q  

 
Figure 2: Condition numbers of

N̂
Q  and 

N̂dec
Q  in GPS 

and dual donstellations cases. Left plot: the float 
ambiguity variance-covariance matrix 

N̂
Q  Right plot: 

the decorrelated ambiguity variance-covariance matrix 

N̂dec
Q   
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On the other hand, the condition properties of 
decorrelation methods may not necessarily link to the 
ambiguity searching efficiency. A simple way is to count 
the grid points within the search space. Although the 
volume of a search space has been demonstrated to be a 
fair approximation of the number of grid points on the 
average (Teunissen et al., 1996), the relation between the 
grid point number and condition number have not been 
specifically examined. In the later context of this work, 
we will also compare the number of search grid points of 
different decorrelation methods to show their 
dependence. 
 
Since the success rate of bootstrapping integer solutions 
could be a very good approximation of ILS success rate 
(Teunissen, 1998; Verhagen, 2003) have numerically 
demonstrated close agreement with actual statistical 
results by Feng and Wang (2011), in this contribution, 
we will compute the success rate of ambiguity 
bootstrapping integer estimation with different 
decorrelation methods. It is also noticed that the work by 
Henkel (2007 and 2009) investigated the impact of 
biases inflation by integer decorrelation transformation. 
 
The rest of paper is organized as follows. Section 2 
briefly introduces different decorrelation techniques and 
introduces the modified inverse integer Cholesky 
decorrelation method. Section 3 presents the random 
simulation strategies, the concept of generating dual 
constellations and the criterion used to compare the 
performance of different decorrelation methods. Section 
4 discusses the experimental results from four 
computation scenarios. The main findings of the paper 
are summarized in the final section. 
 
2. Decorrelation techniques 
 
The variance-covariance matrix 

N̂
Q of DD float 

ambiguities possesses highly-correlated off-diagonal 
elements. The goal of a decorrelation process is to find a 
unimodular matrix Z to reduce the off-diagonal elements 
or reduce the size of the correlation coefficients. Since 
the matrix Z should be admissible and integer, the 
absolute decorrelation is impossible in most cases. The 
LAMBDA method based on integer Gaussian 
decorrelation has been proved to be highly efficient for 
ambiguity resolution in most situations (Teunissen et al., 
1995 and 1997). Although the LLL algorithm is 
developed for lattice basis reduction, the method can 
also be used to reduce the correlation of  

N̂
Q   in ILS 

(Sanzheng, 2008). The inverse integer Cholesky 
decorrelation (IICD) method uses the Cholesky 
decomposition instead of Gaussian decomposition for 
GPS decorrelation (Xu, 2001). Based on IICD method, a 
modified inverse integer Cholesky decorrelation (MIICD) 
is proposed.  

2.1 Integer Gaussian decorrelation  
Integer Gaussian decorrelation is actually performed as a 
sequence of integer Gaussian eliminations and 
permutations. Assuming there exist three elements iiq , 

jjq  and ijq  of  
N̂

Q   that satisfy / min( , ) 1/ 2ij ii jjq q q   , 

then the unimodular matrix can be constructed as 
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if ii jjq q . Here the operator [ ] denotes rounding to the 

nearest integer. Repeating the above steps, the final Z 
transformation matrix can be expressed as 
 
Z=ZnZ2Z1                                 (9) 
 
Thus, the decorrelated matrix  

N̂dec
Q   can be obtained by 

equation (5). 
 
2.2 Lenstra–Lenstra–Lovász  algorithm 
The LLL algorithm was first introduced for decorrelation 
in GPS ambiguity resolution by Hassibi and Boyd (1998), 
followed with the contributions by Grafarend (2000), Xu 
(2001) and Chang (2007). The original LLL algorithm 
uses the integer Gram-Schmidt orthogonalization 
process, however the Givens reflection based LLL 
algorithm can be numerically more robust performed in 
floating-point arithmetic (Luk & Qiao, 2007; Luk & 
Tracy, 2008). Since the matrix  

N̂
Q   is positive and 

definite, it can always be factorized as   ˆ 
T

N
Q V V  . 

Compute the reduced or almost orthogonal basis 0V , so 

that 10V VZ , where Z is unimodular. After these 

steps, we have 
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 ˆ 0(T T T T  0 0N
Q V V V Z) VZ Z V V Z               (10) 

 
Due to V0 is almost orthogonal, the target of 

decorrelation can be achieved with ˆ 0
T 0Ndec

Q V V   . 

 
2.3 Inverse integer Cholesky decorrelation (IICD) 

method 
The inverse integer Cholesky decorrelation (IICD) 

method applies the  TLDL  factorization as follows: 
 

ˆ
T

N
Q LDL                               (11) 

 
where L is unit lower triangular matrix, and D is a 
diagonal matrix with positive elements.  
 
Although L cannot be directly used for ambiguity 
decorrelation due to the real-valued elements, [L] is 
obviously unimoudular as well as [L-1]. Thus, we 

1
1

   Z L  and can compute the decorrelated matrix as  

 

ˆ1 1 1
T

N
H Z Q Z                                                (12) 

 
Since in most cases 1Z  is not equivalent to L, 1H  is no 

longer diagonal. Repeating the process like  
 

1
T

n n n nH Z H Z                                              (13) 

 
until the condition number of Hn reach the predetermine 
value, the final decorrelation can be express as (Xu, 
2001) 
 

 ˆ ˆ2 1 2 1( (T
n n

Ndec N
Q Z Z Z ) Q Z Z Z )                        (14) 

 
To obtain larger off-diagonal elements of L, we may 
rearrange the diagonal elements of  

N̂
Q   and iH  in 

ascending order. Before finishing this section, we would 
like to make some arguments on this method. Firstly, 
what should be the predetermined condition number of 
the decorrelated matrix? The answer is not easy to say, 
because it relates to the dimension and formation of the 
original matrix. Secondly, since this method involves 
iteration process, sorting and stopping criteria would be 
very important for the IICD method (private 
communication with Dr. Xu on 25 June 2010). Simply 
comparing the condition number of Hn and Hn-1 can lead 
to wrong decision, because it is likely to happen that the 
condition numbers of Hn and Hn-1  are not in the strictly 
descending order. To overcome this shortcoming of 
IICD, we will propose a new method in the next section. 

 

2.4 Modified inverse integer Cholesky decorrelation 
(MIICD) method  

Instead of using the predetermined condition number as 
the iteration stopping criteria, we consider applying 
whether the abs(Zn) is an identity matrix to stop the 
process of inverse integer Cholesky decorrelation, where 
abs( ) is the absolute value operator. In addition, we may 
also rearrange the diagonal elements of H in descending 
order after stopping iteration and repeat the decorrelation 
process. It is observed that the condition numbers of Hi 
usually decrease with fluctuation, so we will record the 
condition number of Hi and transformation matrix Zi 
each time while conducting the procedure of 
decorrelation. This function allows us to be able to find 
the smallest condition number by searching Hi. Another 
iteration stopping criteria in this method is the 
predetermined iteration number. Figure 3 depicts this 
modified inverse integer Cholesky decorrelation method.  
 

 
Figure 3: Flowchart if the modified inverse integer 
Cholesky decorrelation method. 
 
3. Random simulation and measuring 

performance  
 
In order to study the numerical performance of different 
decorrelation methods, an isotropic probabilistic model 
is used to simulate a positive definite matrix instead of a 
particular one (Xu, 2001 and 2002). In addition we apply 
the concept of Virtual Galileo Constellation (VGC) to 
generate useful data sets of dual-constellations (Feng, 
2005). The condition number is usually used to be an 
index of decorrelation methods performance (Svendsen, 
2006), but it might not directly reflect the integer 
candidates search efficiency. Therefore, the integer 
candidates search numbers can be compared with 
different decorrelation method.  
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3.1 Random simulation method  
Any positive definite matrix Q can be decomposed by 
singular value decomposition as 
 

T Q U U                  (15) 
 
where U is the normalized orthogonal eigenvector matrix 
and    is the diagonal matrix with positive eigenvalues 

1 2 n      . Then the simulation of Q is turned 

into design of U and   .  
 
The isotropic probabilistic model is used to generation of 
an arbitrary U, which can be uniquely represented as 
 
  n(n-1) 32 n1 31 21=  U U U U U U                               (16) 

 
where  
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,              (17) 

 
I1, I2 and I3 are the identity matrices of suitable orders, 
0 is a zero matrix or vector and / 2 / 2ij      (Xu, 

2001and 2002). 
 
The next step is to design   which is related to the 
eigenvalues of Q. Since the condition number of Q can 
be expressed as follows 
 

max min( ) /cond  Q                   (18) 

 

 
Figure 4: The eigenvalues partition of the covariance 
matrix of the float ambiguities. Left plot: the three 
largest eigenvalues; Right plot: the remaining 
eigenvalues  

Although we can generate all the eigenvalues equally 
separated with predetermined condition number or ratio, 
more complex assumption or constrains can be imposed. 
For single baseline geometry-based model, there are only 
three independent DD ambiguities and other DD 
ambiguities can be derived from those(Li & Shen, 2010). 
Figure 4 shows the eigenvalue partition of the covariance 
matrix of the float ambiguities in single baseline. 
Obviously there are three large ones and the remaining 
eigenvalues are significantly small. 
 
3.2 Virtual Galileo Constellation (VGC) Model 
The concept of VGC is to combine the GPS 
measurements data sets recorded at two epochs separated 
by a few hours to form dual constellations for data 
analysis. Feng (2005) showed that the separation can 
range from 1 to 2 hours. For GPS and VGC data sets, 
one can obtain the linear equations based on  (1) 
 

gps gps gps

gal gal gal

= + gps

gps
gal

gal

 
      
      
           

X
L A B 0 e

N
eL A 0 B

N

                       (19) 

 
where the subscript “gal” represents Galileo. It is noted 
that in (19), two data sets are assumed to have the same 
coordinates systems, but different sets of ambiguity 
parameters.  
 
3.3 Measuring performance  
Condition numbers are often used to compare the 
performance of different decorrelation techniques, which 
only reveal the ratio of the square of semi-major axis and 
semi-minor axis of search ellipsoid. It can only partially 
reflect the ILS search progress efficiency; thus, the 
search numbers of grid points are also used to compare 
the impact of different decorrelation methods on search 
efficiency within the same search method. The details on 
how to compute the search numbers of candidates are 
referred to the instruction of LAMBDA and MILES (De 
Jonge & Tiberius, 1996; Chang & Zhou, 2007).  
 
Furthermore, the success rate is computed considering 
ambiguity reliability requirements. The actual success 
rate of ILS is difficult to calculate; nevertheless the 
success rate of bootstrapping integer solution is a lower 
bound and a very good approximation of ILS (Teunissen, 
1998; Feng & Wang, 2010), which can be computed as  
 

0

t

1/ 2 2
0 01

ˆ ˆP( | ) P( | )
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where the diagonal elements of i|IQ can be calculated by 

factorization based on (11). 
 
4. Experiments 
 
The purpose of the experimental analysis is to examine 
the decorrelation performance of LAMBDA, LLL, IICD 
and MIICD methods in different situations. Four 
computation scenarios are set up as follows: 
 
 Scenario 1: Performing LAMBDA, LLL, IICD and 

MIICD decorrelation with randomly simulated 
definite-positive covariance matrices; 

 Scenario 2: Performing LAMBDA, LLL, IICD and 
MIICD decorrelation with randomly simulated 
definite-positive covariance matrices where 
eigenvalues are constrained to certain values as 
discussed in Section 3; 

 Scenario 3: Performing LAMBDA and MIICD 
decorrelation in ILS processing of a real GPS data 
set for a 21 km baseline ; 

 Scenario 4: Performing LAMBDA and MIICD 
decorrelation in ILS processing of the same data set 
as Scenario 3, but added with virtual GNSS data.    

 
In Scenarios 1 and 2, 300 Q matrix samples are 
randomly generated for simulation experiments. We then 
set the condition number of original positive definite 
matrix Q based on the sample dimension size (as shown 
in Figure 5).  The condition number is set as 1×104, if  
4 dim( ) 20 Q ; or 1×105, if  20 dim( ) 24 Q , where 

dim () is the matrix dimension operator.  
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Figure 5: Dimensions of the 300 random simulation 
examples 
 
Figure 6 shows the condition numbers of the original 
simulation matrix Q and the results for four 
decorrelation methods for Scenario 1. It is obvious that 
all decorrelation methods can significantly decrease the 
condition number of Q. Particularly, the condition 

numbers resulted from LLL and MIICD decorrelation 
are smaller than 200 and in most cases are smaller than 
100. Meanwhile, the condition numbers resulted from 
other two methods, LAMBDA and IICD are slightly 
higher, mostly below 200 with occasional peaks to 400. 
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Figure 6: Condition numbers of simulated Q samples 
and results from LAMBDA, LLL, IICD and MIICD with 
Scenario 1 
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Figure 7: Condition Numbers of simulated Q samples, 
results from LAMBDA, LLL, IICD and MIICD in 
Scenario 2 
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For Scenario 2, constraint eigenvalues of Q were 
generated for performance evaluation as discussed in 
Section 3.1. The condition numbers of the original Q 
matrix and four decorrelation methods are shown in 
Figure 7. In this scenario, though most samples were 
successfully decorrelated by these methods, results 
indicate that the decorrelation may not occur at some 
epochs based on given stopping criteria on condition 
number comparison. For instance, at epoch 206, the 
decorrelation did not happen with IICD method.  
 
Table 1 summarizes the events and percentages when the 
condition numbers of decorrelated matrices from 
different methods are smaller than those from AMBDA 
method. It is clear that MIICD has the best performance 
in terms of condition numbers in both of two scenarios. 
It shows that MIICD method outperformed other three 
methods in terms of the events with smaller condition 
numbers than LAMBDA method. In particular, without 
eigenvalue constraints in the decorrelated matrices, in 
235 out of 300 samples, or at 78.33% of time, MIICD 
conditional numbers are lower than LAMBDA condition 
numbers. With eigenvalue constraints, the samples and 
percentages grow to 245 and 81.67% of times, 
respectively. Therefore, for simplicity, only MIICD and 
LAMBDA method are compared for scenarios 3 and 4.   
 
For Scenario 3 and Scenario 4, a real GPS data set of 24 
hours collected at sampling rate of 30 seconds is used. 
The virtual Galileo constellation (VGC) used in Scenario 
4 is generated from the collected dataset with time 
latency of 2 hours. 
 
Table 1: Lower condition number statistics derived from 
LLL, IICD and MIICD with respect to LAMBDA 
 

 Scenario 1 Scenario 2 
LLL 161 

(53.67%) 
213 (71.00%) 

IICD 178 
(59.33%) 

225 (75.00%) 

MIICD 235 
(78.33%) 

245 (81.67%) 

 
The condition numbers of LAMBDA and MIICD 
methods for Scenario 3 and Scenario 4 have been 
computed and shown in Figure 8 and Figure 9 
respectively. It can be clearly seen that the condition 
number results of these methods have similar trends and 
fluctuations in most cases except the MIICD has smaller 
condition numbers. In particular, the MIICD method has 
significant performance improvement in the dual 
constellation case where the peak condition number of 
LAMBDA is larger than 8000 while the peak MICCD 
condition number is about 1000.  
 

 
Figure 8: Condition numbers of Q matrices from a 24-h 
data set, resulting from LAMBDA and MIICD with 
Scenario 3. 

 
Figure 9: Condition numbers of Q matrices from a 24 h 
data set, resulting from LAMBDA and MIICD with 
Scenario 4 
 
The search candidate numbers of LAMBDA and MIICD 
methods for Scenarios 3 and 4 are shown in Figure 10 
and Figure 11 respectively. It can be clearly observed 
that the search candidate numbers of LAMBDA are 
generally larger with respect to these of the MIICD 
method. Similarly to the condition number results, the 
improvement in the search candidate numbers of MIICD 
method is more significant in the dual constellation case.  
For instance in Scenario 4, the search numbers of 
LAMBDA are around 1×105 between epochs 2400 and 
2800, whereas the MIICD search numbers are mostly 
less than 200 with the peak of 4000 during the time. 

 
Figure 10: Search candidate numbers in the 24 h data set, 
resulting from LAMBDA and MIICD with Scenario 3 
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Figure 11: Search candidate numbers in the24 hours, 
resulting from LAMBDA and MIICD with Scenario 4 
 
To investigate relations between condition numbers and 
search candidate numbers, we can either draw the scatter 
plots or calculate the correlation coefficients. Figure 12 
shows the scatter plots of these two parameters. A linear 
dependence is clearly shown between the condition 
number and the search candidate number.  

 
Figure 12: Scatter plots of the search candidate number 
against the condition number  
 
Table 2 presents the correlation coefficients which also 
verify that the condition number is highly related to the 
candidate search number. On the other hand, the 
correlation coefficient 0.8050 also reveals that the 
condition numbers cannot totally be represented by the 
search candidate numbers.  
 
Table 2: The correlation coefficients between search 
candidate numbers and condition numbers 
 
Correlation coefficient Search candidate number 

Condition numbers 0.8050 
 
The success rates of LAMBDA and MIICD method were 
computed with (20) for Scenario 3 Scenario 4 and shown 
in Figure 13 and Figure 14 respectively. It is seen that in 
most cases the computed success rates of LAMBDA are 
higher than MIICD, particularly for the dual 
constellation case as evidenced in Figure 15. However, 
the actual statistics for success rates are the same from 

both methods. Table 3 summarizes the statistics of 
LAMBDA and MIICD methods in the cases of Scenario 
3 and Scenario 4.  
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Figure 13: Computed success rates of the 24-h data set, 
resulting from LAMBDA and MIICD with Scenario 3 
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Figure 14: Computed success rates of the 24 h data set, 
resulting from LAMBDA and MIICD with Scenario 4 
 
Table 3: MIICD with respect to LAMBDA: data epochs 
with Lower condition numbers and search numbers and 
success rates derived from the 24-h data set. 
 

 Scenario3 Scenario 4 

Condition  numbers 2265 
(78.65%) 

2816  
(97.78%) 

Search  numbers 2849 
(98.92%) 

2880 
(100%) 

Computed success rates 2878 
(99.93%) 

2880 
(100%) 

Actual success rates 0 
(0%) 

0 
(0%) 

 
From the above figures and tables, we can obtain the 
following useful observations: 
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 MIICD has better performance than LAMBDA in 
terms of condition numbers and search grid point 
numbers, especially in the high dimension case and 
the dual constellation case. For instance, 97.78% of 
the condition numbers and 100% of the search grid 
point numbers of MIICD method are smaller than 
those of LAMBDA method. In terms of the 
condition numbers, the improvement percentage 
(78.65%) of Scenario 3 is very close to the simulated 
case (78.33%) of Scenario 1; 

 In terms of computed success rates of integer 
ambiguity bootstrapping solutions, the success rates 
of LAMBDA method is mostly higher than MIICD 
method. But both methods lead to the same actual 
success rates (100%). This may indicate that the 
bootstrapping success rate formula may not suit 
MIICD method well.  

 
5. Conclusions 
 
Effective decorrelation is the key to reliable and fast 
phase ambiguity resolution in GNSS real time data 
processing. Several decorrelation techniques have been 
developed and their performance have been discussed 
with a main focus on condition numbers. Although the 
inverse integer Cholesky decorrelation (IICD) method 
may outperform the LAMBDA method and LLL 
algorithm as shown through numerical analysis with 
random simulation ( Xu, 2001), its performance with real 
world data has not been reported.  
 
In this contribution, we have proposed a modified 
inverse integer Cholesky decorrelation (MIICD). Four 
different experiments from respective simulation data 
and real data have demonstrated that further 
improvement has been achieved by MIICD. In general, 
results from both random simulation and real data have 
suggested that MIICD can provide superior performance 
in most of the situations. In particular, the MIICD 
method can significantly reduce the condition numbers, 
at 78.65% and 97.78% of times, search numbers at 
98.92% and 100% of times in single and dual 
constellation cases, respectively, comparing with the 
LAMBDA method. This performance improvement 
demonstrates its potential benefits for real world GNSS 
ambiguity resolution data processing. 
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