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Abstract Currently, there exist mainly three error sourcbkat t

limit the reliability of the integer resolution: rst, there
Carrier phase measurements are extremely accunate bis the double difference ionospheric delay, whicthyo
ambiguous. The estimation of the integer ambigsiitle ~ cancels for short baselines. Secondly, the douiffierd

in general split in two parts: A least-squares tflsalu- ence tropospheric delay is often neglected, whitfoi
tion, which is obtained by disregarding the integesp- duces some errors especially if there is a sigific
erty, and the actual fixing. The latter one caralsgmple difference in the height between both receiverse Th
rounding, a sequential fixing (bootstrapping), ariate- third and probably most challenging error sourceig-

ger least-squares estimation, which typically idelsian tipath. Fig. 1 shows the probability of wrong figirfor
integer decorrelation and a search. All these ¢ixin geometry-based widelane ambiguity resolution asa-f
methods suffer from a poor accuracy of the floautsmn tion of the baseline length. We can observe a anhat
due to the small carrier wavelengths. Moreover, theincrease in the failure rate if there is an ion@sjhgra-
optimal integer least-squares estimation technicares  dient of 1 mm/km between both receivers. It causes
extremely sensitive to unknown biases. double difference ionospheric delay which occursaas
bias in the ambiguity resolution.
This paper provides a new group of multi-frequency
linear combinations to overcome the previous shontc

ings: The combinations include both code and aarrie
phase measurements, and allow an arbitrary scaling
the geometry, an arbitrary scaling of the ionosjgher
delay, and any preferred wavelength. The maxinopati >
of the ambiguity discrimination results in combioat =
with a wavelength of several meters and a noisel lefs g
a few centimetres. These combinations are recom- é 1
mended for any application where reliability is mor 2 -
important than accuracy. This paper restricts hedr g z no int. dec.
combinations for Galileo although the concept can b 2 10° , gedmmikn
equally applied for GPS or any other GNSS system. =1 . g=5mmAm
Moreover, the paper provides an efficient methadtie 10° S "f;';:r:/i;
computation of the success rate of rounding. R Yoo oC ZZZZIZ [ \?vith int. dec.
10 0 1‘0 2‘0 3‘0 40 50
Keywords: ambiguity resolution, multi-frequency code Baseline length [km]
carrier linear combinations, pull-in regions, sissceate Figure 1: Reliability of geometry-based widelanebam
guity resolution with double difference Galileo reea
urements.

1. Introduction

. . . o The probability of wrong fixings is shown in Fig.far
Real-time kinematic (RTK) positioning uses double pootsirapping without and with integer decorrelaio
difference carrier phase measurements. The double d \yhereas the latter one enables a certain improvemen
ferencing eliminates both receiver and satellitasés over the first one. Galileo double difference measu
and clock offsets, which simplifies the resolutioithe ments on E1 and E5 were combined into an ionosphere
carrier phase integer ambiguities. free code only combination and a phase-only combina
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tion with a wavelength of 78.2 cm. The latter conabi and carrier phases in a joint linear combinatiomenrot
tion amplifies the ionospheric delay by a fact@21.The fully exploited, e.g. the code coefficients werstrieted
failure rates significantly increase if the ionospb to integer numbers or the combination wavelengts wa
gradient rises to 5 mm/km — a value which is $tilb derived only from the phase part of the combination
orders of magnitude below the largest ionospheaclig

ent that has been observed so far. This is thevatain In this section, the class of linear code carrigmbina-
for the derivation and analysis of a new set o&din  tions is further generalized such that an arbitsagling
combinations that enable an arbitrary scaling efitmo- of the geometry, an arbitrary scaling of the iorfes
spheric delay and any preferred wavelength. delay, and any preferred wavelength are feasible T

code measurements from satelliteobserved at usex
2. Multi-Frequency Code Carrier Linear Combi- on frequencym are modelled as

nations
k _ k K\T K

Multi-frequency linear combinations are an effidien Pum = HX“_X H+(e“) o +C(6t”_6t )
approach to improve the reliability of carrier pbaste- Ty + Ol ua* A3 St by, B (1)
ger ambiguity resolution. The linear combinationalde . ‘ "
a significant suppression of the ionospheric delag an +Oph,m +€pbm'

increase in the wavelength, while the range infdiona . N ] o

is kept. A systematic search of all possible duet f With the user positiorx,, the satellite positior”, the
quency phase-only widelane combinations has beenunit vectore® pointing from the satellite to the receiver,
performed by Cocard and Geiger (1992) and by Collin . . K .

(1999). An L1-L2 linear combination with a wavel¢mg the satellite po_smon errdl's_x due to imperfect knowl-
of 14.65 m was found. However, the combination also €dge of the orbit, the receiver clock offgf, the satel-
amplifies the ionospheric delay by more than 25T lite clock offsetdt*, the speed of light, the tropo-
generglization to measurements on t.hree. and mere.fr spheric delayT* , the ratio of frequencieg, =f,/f
guencies enables much more attractive linear caanbin ] ) ] ——
tions as shown by Henkel and Giinther (2007), by Wb the first and second order ionospheric delays, {I }
bena (2007), by Feng (2008), or by Richert and El- on L1/E1, the receiver code bigs , the satellite code
Sheimy (2007). For example, a Galileo triple frame _ . - .

E1-E5a-E5b linear combination with a wavelength of bias bp;' the delayopb‘m due to code multipath, and the

3.285 m suppresses the ionospheric delay by 17 dBcgge noise , . A similarmodel is used for the carrier

However, a complete elimination of the ionospheye i wm
not achievable with phase-only widelane combination = phase measurements:

Therefore, Henkel and Ginther (2008) suggested the ) o = HX -XKH+(ek)T 5xk+c(6t _6tk)
inclusion of code measurements in the linear coabin mrum " ! u

tion. The ambiguity discrimination was introducesiam AT I 1 s +b +b (2)
optimization criterion for the combinations: It was- u Gl ug qu ul’ Soum gk

fined as the ratio between the wavelength and the d +0, +A_N< +¢g

bled standard deviation of noise, and shall be maxi Wm MM T

mized. The code measurements relax the integer conyith the wavelength\, and the carrier phase integer
straint and enable the computation of a dual fraqye

geometry-preserving, ionosphere-free linear contluina
with a wavelength of 3.285 m and a noise level &dva ments of (1) and (2) are linearly combined in (&hwhe
centimetres. Henkel, Gomez and Gunther (2009) com-phase coefficienty and the code coefficierg_. The
puted multi-frequency code carrier linear combimiadi
including the Galileo signals on E1, E5 and E6. kétn
(2009) gives a detailed derivation of code carcmmbi-
nations of maximum discrimination for an arbitrary
number of frequencies. Three Carrier Ambiguity Reso

tion (TCAR) has been extensively analyzed also@yeE g first term on the right side of (4) describee ge-

and Li (2009), Feng and Rizos (2009), Hatch (20868 gmetry term which can be scaled by any arbitraiyesa
Hatch et al. (2000). They all considered linear boma- h.ie
L ie.

tions of carrier phase measurements to increaseotime
bination wavelength, and linear combinations of ecod
measurements to suppress the ionospheric delay- Howi(a +B ):h (3)
ever, the degrees of freedom given by combiningecod 4= ™ ™™ v

ambiguity Nt,m' The code and carrier phase measure-

choice of these coefficients is obtained from saoe-
straints on the geometry, ionospheric delay, costbin
multipath and biases, and a further optimizatioat th
shall be described later in this section.
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i(am)\mq)‘;'mﬂ%pku’m) = (i(a +B ”)) [éHx u—ka+(e“JT Ox* + o8t -1 )+ Tku)—(i(a —B r)qzlg .
—(Z@a jq} +(mila A nN] (Za by, +0, ) +B (B, + b )j
+(i( m ' +Bm P m)j-i-(i(amemm*-ﬁm )J
(4)
A geometry-free combination is obtainedhif=0 and a q = ) )

geometry-preserving one if, =1. Note that the scaling " K
of the geometry also affects the orbital error, ¢theck which depends on the integer coefficiejt and the

offsets and the tropospheric delay. The first oidep-  combined wavelength . The next term on the right side
spheric delayl = can also be scaled by any arbitrary of (4) includes the linear combination of code aadrier
valueh., i.e. phase biases. It can also be considered in the inamb

tion design, e.g. by a pre-defined upper bobnd on
the worst-case combination bias, i.e.

M
2. (0 ~Bn) @i =y (5)
m=1 M
> (ol oy, [, ) + 8.l #] ) < B
where h, =0 corresponds to an ionosphere-free and m= (10)

h, =-1to an ionosphere-preserving combination. How-

ever, a scaling factor in between -1 and O coulthte-  which requires some assumptions on the measurement
esting if a certain ionospheric suppression isaglye  biases. The superposition of multipath delays ¢sm lae
achieved by double differencing. Similarly, the et included in the combination design, e.g. by
order ionospheric delay can also be scaled by ahyev

B,

h., i.e. M .
3 >:(las/ oy,

DERNAR

L m Tmjrham ¥ with some pre-defined upper boutd_ on the worst-
case superposition of multipath delays. These cbeld

The next term on the right side of (4) describeslitear chosen from an elevation-dependant exponential-func

combination of integer ambiguities, which shalldzpial tion, i.e.

to a common wavelength times a single integer ambi-

)s 6 . (11)

uity N, i.e. -E

guity N, Gy =g, (12)
M

D0 AN L =ANY, @ with the decay constant, elevation angleE and delay
m=1

0, for E=0. Finally, the last term on the right side of

which can be easily solved fou¥: (4) describes the linear combination of phase ardkc
noises. Its variance is given for statisticallyeépéndent
measurements b

Nk za )\me (8) y

u
ml)\

=i (Gk)2 = i(aﬁqo‘sbm +[320‘fkuvm , (13)

As N¥ is an unknown integerj has to be integer o . _
' and can be minimized under the consideration of all

valued to obtain an intege|. Rearranging (8) gives  qther constraints. Alternatively, the combinatiaas be

the phase coefficient optimized such that the reliability of ambiguitysodu-
tion is improved at the price of a slightly incredsoise
level. This motivated Henkel and Gunther (2008) to
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introduce the ambiguity discrimination as the ratie-

tween the combination wavelength and the doubled

noise standard deviation, i.e.

(14)

where the indices of the user and satellite werétedn
to simplify notation. The ambiguity discriminatiomas
further generalized by Henkel (2010b) to

A
K,O+K,b'

(15)

which includes a weighted sum of the combinatiois&o
and bias. The latter one can be neglected if antlyigu
resolution is based on an ionosphere-free linearbto
nation of double difference measurements, and &f th
multipath is sufficiently small. The maximizatior the
ambiguity discrimination corresponds to the minimiz
tion of the probability of wrong fixing for a geomng-
free, ionosphere-free linear combination. As thiper is
focussing more on the reliability than on the aacyr
the further analysis is restricted to the classlimdar
combinations that maximizB® . Obviously, the maximi-
zation of the ambiguity discrimination makes théimpl
combinations time-dependent, as the noise level typ
cally depends on the satellite elevation. Howevee,
optimal combinations do not change if the standied
viations of the code and phase measurements dexlsca
by a common factor on all frequencies. Note also tihe
optimization of the combinations can be easily per-
formed in real-time.

Let us start the derivation (Henkel (2010a)) ofiropim
a, andp_by introducing the total phase coefficient

(16)

A= o (17)
sz
m=1"'m
ReplacingA in (9) by (17) gives
a, :JJA :lim Ml' W¢. (18)
)\m )\m zjim
m=l)\m

The constraints on the geometry and first-order+ion
spheric delay are written in matrix-vector notatigsing
(3), (5) and (18), i.e.

93
Wy
w{ﬁl}wz Ps :[hl}, (19)
Bz : hz
Bu
with
1 1
w=l ] (20)
0>
and
1 1 1
S, 1 21
D e S M
m=1 mzjim
m=l)\m

Note that the second order ionospheric delay hds no
been included in (19) as it is often negligible.. EtP)
can be solved for the code coefficiefsand3,:

W, M
8 H g || [3FEWT By
1 :l.IJ_l 1 W 3 - m=3
|:BZ:| ' |:h2:| ’ S ’
B tl+t2Wq> +2}mBm
M m=

(22)

where thes andt , mO{1...,M}, are implicitly
defined by the last equality, i.e.

Mgl

(23)
S| 1
[t2:| ) _Lpl 1L'J2|:0M_2X1:|1
and
0m—2><1
Sm | _ _wt (24)
=-yly| 1
tm OM—le

Equation (22) leaves the integer coefficiepfsm=>1,
the code coefficient3 ,m=3, and the total phase
weight w, as unknowns. The maximization Bf over

these variables shall be performed in two stehasn
in Fig. 2.
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M (Sﬁ%% +STB)SB5§1+(t1+ t2w¢+tT[3) tm§2+2[3

Ki

;;\m\/rf

W2 +(s+sw, +5B) o2 +(t+ Lw, + ') o +BTZp

94
with 16 \/ﬁzwg +(51+52W1> +sT[3)2c5§1 +( L+ LW, +tT[3)2c5p22 +B"=B
b= w, $b¢‘+‘q+ §V‘$+5TB‘¢91 +‘ t+ tz"\é”TBM]R +(d(|3))T|3
(25)
(26)

+K2Engn(§+ S V¥+STB) Sq] pl‘+ Sg(]lt-l- g+ tTB) tq] ;E’""d(ﬁ))': 0

Frequencies and
noise assumptions:

Maximization of

R — fi,eefu
ambiguity discrimination
Uﬂl? M TU/)D[
Oprs--+30dps

a.) Analytical computation

. Constraint on geometry: h
max D(F,we, 3) ‘ © v
we, .
ve:B Constraints on 1st and 2nd
order ionospheric delays

b.) Numerical search
] 12, ] 13

max D(7,we, 3) ) )
J Constraints on biases
and multipath

b maxs 0 max
Figure 2: Computation of multi-frequency code carri
linear combinations of maximum discrimination

First, a numerical search is performed with a mazam

tion over j - and, secondly, an analytical computation is

performed with a maximization ovev, andp,. Equa-

tion (25) provides an expression of the ambiguiis- d
crimination that is obtained from (15) using (17}8),
(22) and (13), and only depends an and B. Some

abbreviations were introduced to simplify the niotat

M 2
2N m 1 (27)
rlz - mzzlﬂ M J 2 0-;’“ '
)
G, v Oy,
> I (28)
P3Pm O-Fz)M
sgn(B) O,
: (29)

aswellasg=[p,.... B,]", s=[s,....5,]" and
t=[tgnty]"-

The maximization ofD with respect tow, results in
the constraint

aigo' (30)
ow,

and the maximization with respectogives
o
oB
The latter constraint is developed in (26), whiebults
in a highly nonlinear relationship betwewl¢ andp

0. (31)

that can be solved only numerically. Therefore, filve
ther analysis shall be restrictedgp=2 andk, =0.

In this case, (26) can be substantially simplifiesing
(xy)z=(x"z)y. ie.

(s.+ 5w, +s'B) sio;
+(t, +tw, +tB)t @2, +3B

= [oﬁlssT +o; tt'+ Z] B

A
+ [520513 + t20§2 t] w, + [ spjls + rlopzz t] =0,
_— —_
b c

32

which shows a linear relationship betwegn andp .
Solving (32) forp yields

B=-A"(c+b0w,). (33)
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The first constraint in (30) can be further develdas

(s.+sw, +s'B)( 5+ SB) @},
+(t, +tw, +tB)(t,+t"B) @2, +BTZB =0,
(34)

and replacing® by (33) gives

(sl +S,W, —sTA‘l(c+ bwq,))[ﬁ s-¢ A‘l( c+ bv%))wsl
+(t, + tw, —"A™ (c +bw, ))ift, -t A ¢ +bw, )) 2
+(c+bw,)’ (A‘l)T SA™ (c+bw, ) =0,

(35)

which only includesw¢ (and j, hidden inAb,c,s

andt) as unknowns. Equation (35) is a quadratic equa-
tion in Wy ie.
o+ 1,0, +17 (W =0, (36)

with

(sl -s' A'lc)2 o + ( t- tTA'lc)2 o.
+ (cT (A7) ZA']C)

2
m’h

9
(t,-t"A ) (-t"A D)
(t,-t"AD)(t,-t'AE)) o2

+(cT (A*) zab+bT (A7) 2A ‘t)
(52 - A'lb) (—ST A‘lb) &)
+(t,-t"AD) (A b)) B2

(
(

+b7 (A7) zA .
(37)
The latter terml, always vanishes which can be proven

by replacingA,b,c,s andt by their definitions. Thus,
the optimal total phase coefficient is given by

rO
r

Wi —

(38)

95

The optimal phase and code coefficieatsand3_are
then obtained from (33), (22) and (18). The and
B,,can be optimized for any standard deviat&;m. In
this paper, theUpm are chosen according to the Cramer
Rao bound, which is given by

2

o, =T, = ] ¢ . (39)
¢ J(end)|s, (f of
N, ' (IS, ()" af

with the speed of light, the carrier to noise power ratio
C/N,, the pre-detection integration tine, and the

power spectral densitg_(f). The latter one has been

derived by Betz (2002) for binary offset carrierQ8)
modulated signals.

Tab. 1 shows the Cramer Rao bounds of the wideband
Galileo signals, which are used in the further gsial

For GPS, stochastic models for the code and carrier
phase measurements including its time correlativeh
been extensively analyzed during the last yeags, b
Wang et al. (1998), Bona (2000), Tiberius and Kkxsge
(2000) and Li et al. (2008). The obtained standhada-
tions are larger than those given in Tab. 1 du¢h&o
smaller signal bandwidths and different modulation
(BPSK instead of BOC) of GPS.

Table 1: Cramer Rao bounds for Galileo signals at
C/N, =45 dB-Hz andT, =1s

Signal BW [MHz] | T' [cm]
El MBOC 20 11.14
ES AItBOC(15,10) 51 1.95
ESa | BPSK(10) 20 7.83
E5b | BPSK(10) 20 7.83
Eo6 BPSK(5) 20 11.36

Tab. 2, 3 and 4 show the optimized dual, triple fnd
frequency code carrier widelane combinations of imax
mum discrimination foro¢ =1mmand o, =T,

The first line in each table represents a geometry-
preserving (GP) ionosphere-free (IF) combinaticoi; f
lowed by a GP reduced ionosphere (IR, 10 dB suppres
sion) combination that can be used for differentiasi-
tioning over medium length baselines. The nextdine
combination is a geometry-free (GF), ionosphere-
preserving (IP) one, which could be applied for ¢isé-
mation of the ionospheric delay. The last combarais
both GF and IF, which makes it a candidate for gunbi

ity resolution, or multipath analysis. A scaledsien of
this combination was recently used by Li et al.1(@0
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The linear combinations are characterized by a wave also that all code coefficienf of the triple and four

length of a few meters and a noise level of seve#al  fequency GF-IF combinations are quite small, which
timeters, which results in a large ambiguity distna- jqicates a large robustness over code multipath.

tion D . The GP-IF combination tends to a slightly larger 1o search of the optimal integer coefficients was
D than the GF-IP one but both discriminations argda P g "

enough to enable a reliable integer ambiguity ggmi ~ Performed ovetj |<4 to avoid large noise amplifica-
if multlpath and biases can be estimated. A Coerari tion, and further constrained W<04mt0 prevent
of Tab. 2 and Tab. 3 shows that the processing®E6  combinations of extremely large wavelengths, thsb a
signal as a single wideband signal is preferred éive  regylt in a large noise level. The wavelength &f GF,
processing of two subbands, i.e. the lower codsenof IF linear combination was set to 1 m as this typeom-
the AItBOC signal more than compensates for the pinations leave one degree of freedom: The disoami

slightly reduced number of degrees of freedom. Theijon is independent ok and both the GF and IF con-
inclusion of E6 measurements further increasesathe straints are fulfilled for any\ .

biguity discrimination, which achieves its highestue
for the E5a-E5b widelane ambiguity combination. éNot

Table 2: Dual-frequency code carrier widelane corations of maximum discrimination fQj’¢ =1mm and o,=l,

hq ho El E5 A o D
1 0 J L] 72 -1
o 17.2629 | ap  —13.0593 | 3.285m | 6.5cm | 25.12
31 —0.0552 | B —3.1484
1 | -011] 7 1 50 -1
o 16.2508 | ap —12.2936 | 3.092m | 6.1cm | 25.55
51 —0.0487 | By —2.9085
01 -1 |xn =1 J2 1
a1 —10.1831 | a9 7.7035 1 1.938m | 4.9cm 19.65
51 0.0737 | B 2.4059
0 0 J1 =1 Jj2 1
fa %] —5.2550 | an 3.9754 1m 8.2cm 6.09
£ 0.7285 | B2 0.5511
h1 ho El ES5a A o D
1 0 ) L] J2 -1
vy 22.6467 | ap —16.9115 | 4.309m | 31.4cm 6.87
1 —1.0227 | By —3.7125

Table 3: Triple-frequency code carrier widelane barations of maximum discrimination fQj‘¢ =1mm and o,=l,

h1 ho El E5b E5a A o D
1 0 7 1| 72 —41 7J3 3
a1 18.9326 | o —58.0271 | g 42,4139 | 3.603m | 13.9cm | 12.99
31 —0.2871 | S92 —0.9899 | 53 —1.0423
1 |1 011 1 1| 72 —4 1 73 3
1 17.6991 | as  —54.2465 | as 39.6505 | 3.368m | 12.7cm | 13.26
31 —0.2499 | 59 —0.9013 | 53 —0.9519
0 -1 | 5 1| 72 —4 | 73 3
a1 —12.8901 | as 395074 | g —28.8772 | 2.543m | 12.3cm 9.98
31 0.4477 | B9 0.9061 | 53 0.9061
0 0 J 01 72 =11 73 1
aq 0| as —4.0266 | as 3.9242 1m 0.8cm | 62.71
B4 0.0004 | B9 0.0480 | 35 0.0540
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Table 4: Four-frequency code carrier widelane coions of maximum discrimination fQj’¢ =1mm and o,=l,

hy ho El Eo E5b E3a A o D
1 0 J1 1] 52 =3 | 73 0| 7a 2
¥q 21.0108 | a9 —51.1627 | as 0| ay 31.3798 | 3.998m | 6.5cm | 31.02
1 —0.0239 | So —0.0349 | B3 —0.0824 | 34 —0.0867
1| =01 71 1| 72 =3 | Js 0| ja 2
v 19.7197 | as  —48.0187 | a3 0| ey 29.4514 | 3.753m | 6.0cm | 31.22
1 —0.0154 | So —0.0233 | B3 —0.0554 | 34 —0.0585

01 =1 155 =1 jo 41 Js =1 ja -2

a1 —13.1658 | as 42,7460 | a3 —10.0881 | @y —19.6632 | 2.505m | 5.1 cm | 24.81
31 0.0285 | 52 0.0274 | 53 0.0576 | /4 0.0576

0 0 |5 0] g2 01 Js =1 1
o1 0| a9 0] e —4.0266 | ay 3.9242 1m 08cm | 64.27
Jot —0.0038 | o 0.0140 | B3 0.0429 | B4 0.0493

3. Reliable Integer Ambiguity Resolution characterized by the condition number which is rofi
as the ratio between the largest and smallest eidiea
In this section, the linear combinations of thevioas of I
section are used for reliable integer ambiguityhason.

The following model is used for the code and carrie

o ) The success rate can be increased by a sequeteiger
phase measurements from all visible satellites: y q

estimation which also takes the correlation betwien
float estimates into account. It was introducedBbswitt

W=HE+AN+n, (40)  (1989) and is given by

where H denotes the geometry matrig, includes all . . ka1 - -

) Ny =N =Yoo, 07 [@N. R ])
unknown real-valued parametel, is the wavelength KIL,.. k-1 KON N U ... p1
matrix, N are the integer ambiguities, and- N (O,Z) : (44)

is the white Gaussian measurement noise. Note thatith the conditional varianceg? and the covariance

Y can either consist of uncombined code and carrier o Nee .

phase measurements (traditional approach), or of tw Oy - As the conditional ambiguity estimates are
optimized GP linear combinations (our approach): a

code carrier combination of maximum discrimination
and a code-only combination of minimum noise amplif

cation. In both cases, the estimationgotan be sepa-

rated from the integer ambiguity resolution by an o
thogonal projection, i.e.

uncorrelated, the success rate of sequential artypigu
fixing can be efficiently computed from the produdt
one-dimensional cumulative Gaussian distributiaes,

2
_(ENk\l,..‘k—l_bN KL, ke 1)

K +0.5 2
1 ZcNkll,,,.k—l ¢

PSZD _£_5 2102 -

Nig, . k-1

Nkl,..,kfl
PIW=P/AN+Pn, (41) ‘
NS

A

(45)

Teunissen (1999) showed that bootstrapping as agll
any other integer ambiguity resolution techniquae ba
fully described by so called pull-in regions. A lpul

region represents the set of all float ambiguiﬁésthat

with pﬁ =1- H(HT):'lH)_lH Tyt The least-squares
float ambiguity solution follows from (41) as

N=(A"s7A) ATz (42) _ )
are mapped to the same integer veetpr. The map
with the covariance S,, s given by
f— —\-1 ~ - ~ _
5, =(ATz"A)" “3) s, :{N OR% |N, = S(N)} . N, Oz (46)

The most simple integer estimation technique isdsu
ing of the float solution of (42). The success faavily
depends on the conditioning of the equation systeis.

These pull-in regions shall now be analysed fordhpe
timal integer least-squares estimation of widelanbi-
guities, i.e.
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~ 2
N-N 47)

-1 !
5

N =arg min

Fig. 3 shows these regions for a double differerareer
phase positioning over a large baseline with a gatel-
lite geometry. Subfigure (a) refers to the estipratof
the E1 integers and subfigure (b) to the widelambia
guities.

1

%% %% %% %%
ANV /M%/
s LA LA
_ %%
e g gV Ve M%/
oo
DA
A /M%/
5 -~ 05 1
(a) E1 pull-in regions withh =19.0cm
AAN® [m]
(b) Widelane pull-in regions with = 3.285m
Figure 3: Increase of pull-in regions with multi-

frequency linear combinations for Galileo

Obviously, the increase in the wavelength from 1810
to 3.285 m substantially increases the size ofpthikin
regions. Both figures also include the error edligiven

by

N —|\|H21 —c with ¢=3. Its size is larger than the
4

size of the pull-in region for uncombined ambigestibut
significantly smaller than the size of the widelgma-in
regions. This is another indication for extremediiable
ambiguity resolution with our linear combinatiofishe
integer least-squares estimation can be efficiepdy
formed with the Least-squares Ambiguity Decorrelati

Adjustment (LAMBDA) method of Teunissen (1995).

The size of the error ellipse in Fig. 3 is typit@l a long-
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baseline kinematic positioning with a good satellie-
ometry and measurements from only a few epochs.

Fig. 4 shows the benefit of geometry-preserving
(h, =1), ionosphere-free i, = 0) linear combinations

for Wide-Area Real-Time Kinematics (WA-RTK). If no
linear combinations are used, the baseline (onae pe
epoch), the integer ambiguities (using bootstragpmiith
integer decorrelation), the tropospheric wet zeditay
and its rate, the ionospheric slant delays fosatéllites
and their rates have to be estimated from doulfferdi
ence measurements on at least two frequencies, there
wideband Galileo signals on E1 (CBOC modulatiorg an
E5 (AItBOC modulated) were considered at a catder
noise power ratio of 45 dB-Hz.

100 i i i
| | |
|
| |
| | I
210 bl b ]
c | | | |
é | | | |
o | | | |
= | | | |
g 10 ‘ ‘ 1079
Wl R I | _ _ _ _ _ _ - __ 1 ____]
5 10 | | |
2 | [ | |
= | | | |
% | | | |
| 15 | | | |
a0 r AT 1 T
AN IR
IF code-carrier and IF code-only combinations
2 no combinations over frequencies
10 11T 1T I In T 0r I NI 1107 T (N T I INTo
0 5 10 15 20

Time [h]
Figure 4: Benefit of E1-E5 mixed code carrier linea
combinations for reliable integer ambiguity resmint

The small wavelength and the large number of unknow
parameters result in a rather poor probability obrvg
fixing, which varies betwee0™and 1 depending on
the satellite geometry. This is far too much fofeBaof-
Life critical applications where a failure rate atf most
107 is required. Therefore, the use of an optimized
multi-frequency code carrier combination of maximum
discrimination and of a code-only combination ohimi
mum noise amplification is analysed. As both linear
combinations are ionosphere-free, the latter twarpe-

ter sets do not have to be estimated. Fig. 4 shioatthe
probability of wrong fixing can be reduced by saler
orders of magnitude due to the large wavelength285

m. The10° requirement is fulfilled for any satellite
geometry.

Fig. 5 shows the benefit of a different class oedr
combinations: the geometry-frefth, = 0) ones, which

eliminate also the clock offsets, orbital errorsl &rmpo-
spheric delay.
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The benefit is analysed for differential positiagiwith
triple frequency (E1, E5a, E5b) receiver-receiviegle
difference 1 Hz measurements of 20 s.

0
10 T :
| |
|
| |
| |
5 | |
210 B 1
& | |
=4 | |
c
o l !
R
510 F---- wil
Z‘ |
o |
§ 1 |
o | |
a 10715 ***** 4‘ ****:* -
| | | |
| | no linear combinations
20 | 1| =™ GF, IF linear combinations
5 | | | 1
5

10

0 15 20

Time [h]
Figure 5: Benefit of geometry-free, ionosphere-free
linear combinations for integer ambiguity resolatio

If no linear combinations are used, the carrierspha
integer ambiguities, the baseline (once/ epocts,difr
ferential receiver clock offset (once/ epoch), thmo-
spheric slant delays and their rates, as well agrdpo-
spheric wet zenith delay and its rate have to lie es
mated. In this traditional approach, the ambigsitiere
resolved sequentially according to (44) with intege
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Fig. 5 shows that this probability of wrong fixinig
almost constant over time and enables a substamtial
provement over the traditional approach especitly
poor satellite geometries. In this case, the bedef to
the increase in, from 19 cm to 1 m more than compen-
sates for the degradation due to individual s#étefiroc-
essing.

4.  Success rate determination for rounding of float
solution

Simple rounding of the float solution has recermity
ceived little attention mainly for two reasons: SEjrit
provides a lower success rate than sequential toapts
ping and integer least-squares estimation for saoia
measurements. Secondly, there does not exist ad:los
form expression for the evaluation of the succass of
rounding. Therefore, the easily computable succates
of bootstrapping became the de-facto standardereith
used as a lower bound for integer least-squarémast
tion or directly used to characterize bootstrapping

However, the simple rounding could be an intergstin
candidate for precise point positioning as it ssleensi-
tive with respect to unknown biases than sequeatial
biguity fixing and integer least-squares estimatidhe
sequential estimation accumulates the biases adugr
satellites, which could either cancel or amplifp &
worst-case scenario, the integer decorrelationhéurt

decorrelation based on uncombined measurements. Thamplifies them, and the search might additionadiguce

use of linear combinations significantly simplifiéise
ambiguity resolution: It directly provides an in&rg
estimate that only has to be averaged dvexpochs, i.e.

PR ALY i L K k
N = T;[Amzzl(amAm¢m<t)+Bmpm<t))] 49)
~ N(N*+bt,02,),
with
=0 -_1_ 49
ST 2DV ()

and thus justifies the maximization of the ambiguit
discriminationD . As geometry-free linear combinations
imply an independent fixing of the ambiguities frath
satellites, the probability of wrong fixing can leéfi-
ciently computed from

(50)

the success rate due to the negligence of biades. T
simple rounding prevents all these disadvantages- C
sequently, there is a need for an efficient contpriaof
the success rate of rounding as Monte-Carlo sinoust
are practically unacceptable for error rates indrder of
magnitude ofl0®. Genz (1992) suggested an efficient
method for the evaluation of the multivariate cuativie
normal distribution. This method uses three integra
transformations and shall be applied for the evainaof
the success rate which is given by

P = P([N]:N): !
‘ZN‘(ZT[)K
- of L e e e
-05-h -05h M M

(51)
where €, = N —N denotes the error of the float solution

N . It is normal distributed, i.e.
g, ~N(0.5;). (52)

with the float ambiguity covariance mat% .
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The Choleskey decomposition is used to diagondliee
error vector, i.e.

=Cg, (53)
with
= CC'. (54)

Thus, the success rate of (51) can be rewritten as

2 U,
u &y ZeNl %2

> Jez I ez..
J 2T[

Uk eN1 E'le) erle

T

0]

(e -8

dqQ d% dgK
(55)

where the correlation between the float ambiguitges
included in the integration limitg and u, . These limits

are obtained from the inequalities

k
-05-h g, =) Gg S+05 b (56)
= :
which can be solved fogﬂ :
l, <e, <y, (57)
with
k-1
-05-5,-3, G,
l, = =
. =
C:kk
k-1
+05-h -> G g
— j=1
u, =
Ckk
(58)

100
Thus, (53) simplifies to
U Uy (z1) U (B Eer)
PS:I j j dzdz... dz, (61)
|i |.2(21> I‘K(Zlvu'vZK—l)
with the transformed integration limits
) 1 k-1 a
lo= @ —{05-b-3Go (z)
kk =1
) 1 k-1 ~
u, = ¢[0£+o.5— b-> Go( ;)]]
kk =
(62)
Finally, Genz’s third transformation is given by
w, =26~ L (63)

which puts the integral into a constant limit forina,

= (5= (s1)]-

1
(ug =1 ) [dw,dw, ...
0

o'—.»—-

(64)
Eq. (64) can be expanded to
P = (u1 I'l)J'(u'2 Iz)f(wl)j..
(uK - IK)f (Wi l)Jl'f (W )dw,dw, ...dw,,
0 (65)
with
f(wk)={1 v osmest (66)

The introduction off (Wk) does not change the value of

The second transformation uses the cumulative rlorma P but it allows to interpretv, as a uniformly distrib-

distribution to absorb the exponential functiong5%):

z, —db(eﬂk) , (59)
with
o(v)=—L [e o (60)

uted random variable between 0 and 1. Thus, (68) ca

also be written as

K

P=E, .. {D(u’k( W )= (W

with w, ~U (0,1 for all k.
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The success rate of (67) can be efficiently comgute cycles were assumed respectively. In this casediag
using Monte-Carlo simulation. achieves the lowest error rate, followed by sedaknt
fixing without and with integer decorrelation. Thee-

1" ger decorrelation amplifies the biases and theckear
FS5S5S5Em--c3353 . Estmatonwithout 1 criterion is suboptimal which results in the langesor
PSS i ni- -1y - integral transformations ] rate. Consequently, the simplest method is alsortbst
S R L ] Estimation with 4 . H H
10° £ = |
- 0 EEEETEEEAE 25 08 — o ur rangformations | robust one: the rounding of the float solution.
= EEEE-EEE - 10 SEEEE
g F3FAFHR==F 3 FHHHR B
o : T7\7\Tﬁ\7\77T7TT\T\U:::77777777731\D: 107:
g 10t L Benefit of ! i E
S E 3 integral transformations 5 == E gg :
£ CIIDOOIOmMZZCIIDDOCZC juibui o 10
; T T 1 5
10’ tszs555mzzea5 000 e 510
FIF35FRm--F33r05 FIH] 5
Foyt oIt HEI— = 4 HHH I =
I S 7 o o s o il Pl ol B 7 e el e I A ‘s 10 =
10'1 T AT NN LT > E
10° 10° 10" 10° 102 5 s, | —* Rounding, unbiased
Probability of wrong fixing g E| —+— Sea., cor., unbiased E
. F Seq.,dgc.,unbmsed 3
Figure 6: Efficient computation of success ratecafnd- 107 __i _ LS, unbiased 3
. . . . E Rounding, biased E
ing with integral transformations. 2| =+ Seq. cor., biased | *
10 E Seq., dec., biased |3
. . £| —— LS, biased I
3 T T 1 1 1
Genz (1992) suggests the subregion adaptive method 10 5 - L L m "

further improve the efficiency of the numericalegta-
tion. Fig. 6 shows the benefit of computing the extp-
tion value w.r.t.w, in (67) instead of w.rte in (51).

Smoothing constant T [s]

Figure 7: Comparison of various integer ambiguéga-
lution techniques for both unbiased and biased meas
The computational burden is measured by the time re urements with worst-case accumulation of biases.
quired to estimaté®, with a dual core 2.1 GHz CPU. The
use of the three integral transformations enablesta

stantial reduction in the computation time. A reale
evaluation becomes also feasible.

5. Conclusion

In this paper, a new group of linear combinatiorasw
analyzed that include both code and carrier phasgsm
urements on two or more frequencies. An arbitragl-s
ing of the geometry, an arbitrary scaling of th@aeo
spheric delay, and any preferred wavelength cantbe
tained with these linear combinations. The maximnira
of the ambiguity discrimination leads to combinato
with a wavelength of several meters and a noisel lefs
a few centimetres. The integer ambiguities of thesa-
binations can be resolved with a probability of mgo
fixing of less thanl0® with measurements from a few
epochs. These combinations are recommended for any
application where reliability is more important tha
accuracy.

Fig. 7 shows the probability of wrong fixing for neus
integer estimation techniques. An ionosphere-fageiar
smoothing is applied to two GP-IF linear combinasio

(a code carrier combination of maximum discrimioati
and a code-only combination) of E1 and E5 measure-
ments to improve the reliability of widelane ambigu
resolution. Obviously, a larger smoothing periodutts

in a lower error rate. For unbiased measuremehts, t
integer least-squares estimation achieves the tosves

rate of all fixing methods.

A slightly higher error rate can be observed fajusm-
tial fixing with integer decorrelation due to treck of an
integer search. An additional degradation occurthéf
integer decorrelation is omitted, and the largesiraate

Moreover, an efficient method for the computatidnhe
success rate of rounding of the float solution ug-s

is obtained for rounding as it does not considerdtrre-
lations between the float ambiguity estimates. fdre-
ing of the fixing techniques completely changedtia

gested. It is based on a transformation of the ¢atine
multivariate Gaussian distribution into uniform tdisu-
tions, which can be efficiently evaluated in raaid.

presence of biases. An elevation dependent exp'ahent The rounding of the float solution was considered f

bias profile was chosen to analyze the impact oftimu
path. A worst-case accumulation over all visibléeba
lites is considered as described by Henkel et28l09).
The magnitude of the code multipath was set to farm
a satellite in the zenith and to 10 cm for a siéeih the

two reasons: First, the linear combinations impriwe
conditioning of the equation system such that tliereo
strong need of an integer decorrelation. Secomdiynd-
ing of the float solution is much less sensitivahwie-
spect to multipath and biases than bootstrappird) an

horizon. For the phase multipath, 0.01 cycles arid 0 integer least-squares estimation. Both the optichize
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multi-frequency linear combinations with large wave
lengths and the efficient computation of the susaese
are seen as two steps to improve the reliabilitarabi-
guity resolution for precise point positioning.
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